Concept explainers
A large body of lava from a volcano has stopped flowing and is slowly cooling. The interior of the lava is at
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Campbell Biology in Focus (2nd Edition)
Anatomy & Physiology (6th Edition)
Applications and Investigations in Earth Science (9th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
- For the human body, what is the rate of heat transfer by conduction through the body's tissue with the following conditions: the tissue thickness is 3.00 cm, the difference in temperature is 2.00 , and the skin area is 1.50 m2. How does this compare with the average heat transfer rate to the body resulting from an energy intake of about 2400 kcal per day? (No exercise is included.)arrow_forwardAt 25.0 m below the surface of the sea, where the temperature is 5.00C, a diver exhales an air bubble having a volume of 1.00 cm3. If the surface temperature of the sea is 20.0C, what is the volume of the bubble just before it breaks the surface?arrow_forward(a) What is the rate of heat conduction through the 3.00-cm-thick fur of a large animal having a I .40-m surface area? Assume that the animal's skin temperature is 32.0 , that the air temperature is 5.00 , and that has the same thermal conductivity as air. (b) What food intake will the animal need in one day to replace this heat transfer?arrow_forward
- During heavy exercise, the body pumps 2.00 L of blood per minute to the surface, where it is cooled by 2.00C. What is the rate of heat transfer from this forced convection alone, assuming blood has the same specific heat as water and its density is 1050kg/m3 ?arrow_forwardIn 1993, the U.S. government instituted a requirement that all room air conditioners sold in the United States must have an energy efficiency ratio (EER) of 10 or higher. The EER is defined as the ratio of the cooling capacity of the air conditioner, measured in British thermal units per hour, or Btu/h, to its electrical power requirement in watts. (a) Convert the EER of 10.0 to dimensionless form, using the conversion 1 Btu = 1 055 J. (b) What is the appropriate name for this dimensionless quantity? (c) In the 1970s, it was common to find room air conditioners with EERs of 5 or lower. State how the operating costs compare for 10 000-Btu/h air conditioners with EERs of 5.00 and 10.0. Assume each air conditioner operates for 1 500 h during the summer in a city where electricity costs 17.0 per kWh.arrow_forwardA person inhales and exhales 2.00 L of 37.0ºC air, evaporating 4.00×10−2 g of water from the lungs and breathing passages with each breath. (a) How much heat transfer occurs due to evaporation in each breath?(b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute?(c) If the inhaled air had a temperature of 20.0ºC , what is the rate of heat transfer for warming the air?(d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?arrow_forward
- A wood stove is used to heat a single room. The stove is cylindrical in shape, with a diameter of 40.0 cm and a length of 50.0 cm, and operates at a temperature of 400.°F. (a) If the temperature of the room is 70.0°F, determine the amount of radiant energy delivered to the room by the stove each second if the emissivity is 0.920. (b) If the room is a square with walls that are 8.00 ft high and 25.0 ft wide, determine the R-value needed in the walls and ceiling to maintain the inside temperature at 70.0°F if the outside temperature is 32.0°F. Note that we are ignoring any heat conveyed by the stove via convection and any energy lost through the walls (and windows!) via convection or radiation.arrow_forwardA homeowner is unhappy with her heating costs. One wall of her house is 4 meters tall and 8 meters wide and has no windows, and it is made of brick and mortar with a thermal conductivity of 1.0 W m K . It is 40 cm thick. The house is heated to a temperature of 20 ◦C inside. (a) What is the rate of heat loss through the wall on a day when it is 0◦C outside? (b) A layer of rock mineral wool, which has a thermal conductivity of 0.032 W m K is to be installed on the interior surface of the brick wall. How thick should the layer be to lower the rate of heat transfer through this wall to half its original value? (c) If the rock mineral wool is instead installed on the outer surface, is the thickness required the same?arrow_forward(a)Calculate the rate of heat conduction (in W) through house walls that are 10.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 145 m2 and their inside surface is at 21.5°C, while their outside surface is at 5.00°C. ________________ W (b)How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) ______________________ 1 kW room heatersarrow_forward
- (a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C. 1560 X W (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 1 kW room heaters (a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m? and their inside surface is at 20.0°C, while their outside surface is at 5.00°C. 1565.21 X W (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 12 1 kW room heaters now from O…arrow_forwardA thermal window, with an area of 6.0m ^ 2, is constructed of two layers of glass, each 4.0mm thick, separated from each other by a 5.0mm air gap. If the inner surface is at 20.0 ° C and the outer surface is at -5.0 ° C, what is the rate of energy transfer by conduction through the window? The thermal conductivity of glass is 0.8 W⁄ (m. ° C) and that of air is 0.023 W⁄ (m. ° C)arrow_forward(a) Calculate the rate of heat conduction (in W) through house walls that are 11.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 150 m2 and their inside surface is at 20.0°C, while their outside surface is at 5.00°C. 1565.21 (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the next whole integer.) 2 1 kW room heatersarrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning