Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature it the cooling system fails (1 watt 2 1 joule/second or 1 W = 1 J / s and 1 MW = 1 megawatt ). (a) Calculate the rate of temperature increase in degrees Celsius per second ( ° C / s ) if the mass of the reactor core is 1.60 × 10 5 kg and it has an average specific heat of 0.3349 kJ/kg ° ⋅ C . (b) How long would it take to obtain a temperature increase of 2 000 ° C , which could cause some metals holding the radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down because the 5 × 10 5 -kg steel containment vessel would also begin to heat up.) Figure 14.32 Radioactive spent−fuel pool at a nuclear power plant. Spent fuel stays hot for a long time. (credit: U.S. Department of Energy)
Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature it the cooling system fails (1 watt 2 1 joule/second or 1 W = 1 J / s and 1 MW = 1 megawatt ). (a) Calculate the rate of temperature increase in degrees Celsius per second ( ° C / s ) if the mass of the reactor core is 1.60 × 10 5 kg and it has an average specific heat of 0.3349 kJ/kg ° ⋅ C . (b) How long would it take to obtain a temperature increase of 2 000 ° C , which could cause some metals holding the radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down because the 5 × 10 5 -kg steel containment vessel would also begin to heat up.) Figure 14.32 Radioactive spent−fuel pool at a nuclear power plant. Spent fuel stays hot for a long time. (credit: U.S. Department of Energy)
Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature it the cooling system fails (1 watt 2 1 joule/second or
1 W
=
1 J
/
s
and
1 MW
=
1 megawatt
). (a) Calculate the rate of temperature increase in degrees Celsius per second
(
°
C
/
s
)
if the mass of the reactor core is
1.60
×
10
5
kg
and it has an average specific heat of
0.3349
kJ/kg
°
⋅
C
. (b) How long would it take to obtain a temperature increase of
2
000
°
C
, which could cause some metals holding the radioactive materials to melt? (The initial rate of temperature increase would be greater than that calculated here because the heat transfer is concentrated in a smaller mass. Later, however, the temperature increase would slow down because the
5
×
10
5
-kg
steel containment vessel would also begin to heat up.)
Figure 14.32 Radioactive spent−fuel pool at a nuclear power plant.
Spent fuel stays hot for a long time. (credit: U.S. Department of Energy)
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.