Concept explainers
Models of torpedoes are sometimes tested in a horizontal pipe of flowing water, much as a wind tunnel is used to test model airplanes. Consider a circular pipe of internal diameter 25.0 cm and a torpedo model aligned along the long axis of the pipe. The model has a 5.00 cm diameter and is to be tested with water flowing past it at 2.50 m/s. (a) With what speed must the water flow in the part of the pipe that is unconstricted by the model? (b) What will the pressure difference be between the constricted and unconstricted parts of the pipe?
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Additional Science Textbook Solutions
Genetic Analysis: An Integrated Approach (3rd Edition)
College Physics: A Strategic Approach (3rd Edition)
Cosmic Perspective Fundamentals
Campbell Biology in Focus (2nd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Principles of Anatomy and Physiology
- A large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forwardWater emerges straight down from a faucet with a 1.80-cm diameter at a speed of 0.500 m/s. (Because of the construction of the faucet, there is no variation in speed across the stream.) (a) What is flow rate in cm3/s? (b) What is the diameter of the stream 0.200 m below the faucet? Neglect any effects due to surface tension.arrow_forward(a) Verify that a 19.0% decrease in laminar flow through a tube is caused by a 5.00% decrease in radius, assuming that all other factors remain constant. (b) What increase in flow is obtained from a 5.00% increase in radius, again assuming all other factors remain constant?arrow_forward
- Review. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forwardCalculate the Reynolds numbers for the flow of water through (a) a nozzle with a radius of 0.250 cm and (b) a garden hose with a radius of 0.900 cm, when the nozzle is attached to the hose. The flow rate through hose and nozzle is 0.500 us. Can the flow in either possibly be laminar?arrow_forwardAn incompressible, nonviscous fluid is initially at rest in the vertical portion of the pipe shown in Figure P15.61a, where L = 2.00 m. When the valve is opened, the fluid flows into the horizontal section of the pipe. What is the fluids speed when all the fluid is in the horizontal section as shown in Figure P15.61b? Assume the cross-sectional area of the entire pipe is constant. Figure P15.61arrow_forward
- Fluid originally flows through a tube at a rate of 100 cm3/s. To illustrate the sensitivity of flow rate to various factors, calculate be new flow rate for following changes with all other factors remaining the same as in original conditions. (a) Pressure difference increases by a factor of 1.50. (b) A new fluid wit 3.00 times greater viscosity is substituted. (c) The tube is replaced by one having 4.00 times the length. (d) Another tube used with a 0.100 times the original. (e) Yet another tube is substituted with a radius 0.100 times the original and half length, and pressure difference is increased by factor of 1.50.arrow_forwardThe gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forwardA fluid flows through a horizontal pipe that widens, making a 45 angle with the y axis (Fig. P15.48). The thin part of the pipe has radius R, and the fluids speed in the thin part of the pipe is v0. The origin of the coordinate system is at the point where the pipe begins to widen. The pipes cross section is circular. a. Find an expression for the speed v(x) of the fluid as a function of position for x 0 b. Plot your result: v(x) versus x. FIGURE P15.48 (a) The continuity equation (Eq. 15.21) relates the cross-sectional area to the speed of the fluid traveling through the pipe. A0v0 = A(x)v(x) v(x)=A0v0A(x) The cross sectional area is the area of a circle whose radius is y(x). The widening pan of the pipe is a straight line with slope of 1 and intercept y(0) = R. y(x) = mx + b = x + R A(x) = [y(x)]2 = (x + R)2 Plug this into the formula for the velocity. Plug this into the formula for the velocity. v(x)=A0v0(x+R)2arrow_forward
- Figure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forwardLiquid toxic waste with a density of 1752 kg/m3 is flowing through a section of pipe with a radius of 0.312 m at a velocity of 1.64 m/s. a. What is the velocity of the waste after it goes through a constriction and enters a second section of pipe with a radius of 0.222 m? b. If the waste is under a pressure of 850,000 Pa in the first section of pipe, what is the pressure in the second (constricted) section of pipe?arrow_forwardUnreasonable Results A fairly large garden hose has an internal radius of 0.600 cm and a length of 23.0 m. The nozzle-less horizontal hose is attached to a faucet, and it delivers 50.0 L/S. (a) What water pressure is supplied by the faucet? (b) What is unreasonable about this pressure? (c) What is unreasonable about the premise? (d) What is the Reynolds number for the given flow? (Take the viscosity of water as 1.005103(N/m2)s .)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University