A person inhales and exhales 2.00 L of 37 .0 ° C air, evaporating 4.00 × 10 − 2 g of water from the lungs and breathing passages with each breath. (a) How much heat transfer occurs due to evaporation in each breath? (b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute? (c) If the inhaled air had a temperature of 2 0.0 ° C , what is the rate of heat transfer for warming the air? (d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?
A person inhales and exhales 2.00 L of 37 .0 ° C air, evaporating 4.00 × 10 − 2 g of water from the lungs and breathing passages with each breath. (a) How much heat transfer occurs due to evaporation in each breath? (b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute? (c) If the inhaled air had a temperature of 2 0.0 ° C , what is the rate of heat transfer for warming the air? (d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?
A person inhales and exhales 2.00 L of
37
.0
°
C
air, evaporating
4.00
×
10
−
2
g
of water from the lungs and breathing passages with each breath.
(a) How much heat transfer occurs due to evaporation in each breath?
(b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute?
(c) If the inhaled air had a temperature of
2
0.0
°
C
, what is the rate of heat transfer for warming the air?
(d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person?
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest.
a
x = 0
x
b
(a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum.
cm
(b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation?
cm
A block of mass m = 3.00 kg situated on a rough incline at an angle of 0 = 37.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (see the figure below). The pulley is frictionelss. The block is released from rest when the spring is unstretched. The block
moves 11.0 cm down the incline before coming to rest. Find the coefficient of kinetic friction between block and incline.
k=100 N/m
Ө
m
23.
What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.