College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 3CQ
When heal transfers into a system, is the energy stored as heat? Explain briefly.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
College Physics
Ch. 14 - How is heat transfer related to temperature?Ch. 14 - Describe a situation in which heat transfer...Ch. 14 - When heal transfers into a system, is the energy...Ch. 14 - What three factors affect the heat transfer that...Ch. 14 - The brakes in a car increase in temperature by T...Ch. 14 - Heat transfer can cause temperature and phase...Ch. 14 - How does the latent heat of fusion of water help...Ch. 14 - What is me temperature of ice right after it is...Ch. 14 - If you place 0C ice into 0C water in an insulated...Ch. 14 - What effect does condensation on a glass of ice...
Ch. 14 - In my humid climates where there are numerous...Ch. 14 - In winters, if is often warmer in San Francisco...Ch. 14 - Putting a lid on a boiling pot greatly reduces the...Ch. 14 - Freeze-dried toads have been dehydrated in a...Ch. 14 - When still air cools by radiating at night, it is...Ch. 14 - In a physics classroom demonstration, an...Ch. 14 - What are the main methods of heat transfer front...Ch. 14 - Some electric sieves have a flat ceramic surface...Ch. 14 - Loosefitting white clothing covering most at the...Ch. 14 - One way to make a fireplace more energy efficient...Ch. 14 - On cold, clear nights horses will sleep under the...Ch. 14 - When watching a daytime circus in a large,...Ch. 14 - Satellites designed to observe me radiation from...Ch. 14 - Why are cloudy nights generally warmer than clear...Ch. 14 - Why are thermometers that are used in weather...Ch. 14 - On average, would Earth be warmer or cooler...Ch. 14 - On a hot day, the temperature of an 80,000L...Ch. 14 - Show that 1cal/gC=1kcal/kgC.Ch. 14 - To sterilize a 50.0g glass baby bottle, we must...Ch. 14 - The same heat transfer into identical masses of...Ch. 14 - Rubbing your hands together warms them by...Ch. 14 - A 0.250kg block at a pure material is heated from...Ch. 14 - Suppose identical amounts of heat transfer into...Ch. 14 - (a) The number of kilocalories in food is...Ch. 14 - Following Vigorous exercise, the body temperature...Ch. 14 - Even when shut down after a period of normal use,...Ch. 14 - How much heat transfer (in kilocalories) is...Ch. 14 - A bag containing 0C ice is much more effective in...Ch. 14 - (a) How much heat transfer is required to raise...Ch. 14 - The formation of condensation on a glass of ice...Ch. 14 - On a trip, you notice that a 3.50kg bag of ice...Ch. 14 - On a certain dry sunny day, a swimming pool’s...Ch. 14 - (a) How much heat transfer is necessary to raise...Ch. 14 - In 1986, a gargantuan iceberg broke away from the...Ch. 14 - How many grams of coffee must evaporate from 350 g...Ch. 14 - (a) It is difficult to extinguish a fire on a...Ch. 14 - The energy released from condensation in...Ch. 14 - To help prevent from damage, 4.00 kg at 0C water...Ch. 14 - A 0.250kg aluminum bowl holding 0.800 kg of soup...Ch. 14 - A 0.0500kg ice cube at 30.0C is placed in 0.400 kg...Ch. 14 - If you pour 0.0100 kg of 20.0C water onto a 1.20kg...Ch. 14 - Indigenous people sometimes cook in watertight...Ch. 14 - What would be the final temperature of the pan and...Ch. 14 - In some countries, liquid nitrogen is used on...Ch. 14 - Some gun fanciers make their own bullets, which...Ch. 14 - (a) Calculate the rate of heat conduction through...Ch. 14 - The rate of heat conduction out of a window on a...Ch. 14 - Calculate the rate of heat conduction out of the...Ch. 14 - Suppose you stand with one foot on ceramic...Ch. 14 - A man consumes 3000 kcal of food in one day....Ch. 14 - (a) A firewalker runs across a bed of hot coals...Ch. 14 - (a) What is the rate of heat conduction through...Ch. 14 - A walrus transfers energy by conduction through...Ch. 14 - Compare the rate of heat conduction through a...Ch. 14 - Suppose a person is covered head to foot by wool...Ch. 14 - Some stove tops are smooth ceramic for easy...Ch. 14 - One easy way to reduce heating (and cooling) costs...Ch. 14 - (a) Calculate the rate of heat conduction through...Ch. 14 - Many decisions are made on the basis of the...Ch. 14 - For the human body, what is the rate of heat...Ch. 14 - At what wind speed does 10C air cause the same...Ch. 14 - At what temperature does still air cause the same...Ch. 14 - The “steam” above a freshly made cup of instant...Ch. 14 - (a) How many kilograms of water must evaporate...Ch. 14 - On a hot dry day, evaporation from a lake has just...Ch. 14 - One winter day, the climate control system of a...Ch. 14 - The Kilauea volcano in Hawaii is the world’s most...Ch. 14 - During heavy exercise, the body pumps 2.00 L of...Ch. 14 - A person inhales and exhales 2.00 L of 37.0C air,...Ch. 14 - A glass coffee pot has a circular bottom with a...Ch. 14 - At what net rate does heat radiate from a 275m2...Ch. 14 - (a) Cherry-red embers in a fireplace are at 850C...Ch. 14 - Radiation makes it impossible to stand close to a...Ch. 14 - (a) Calculate the rate of heat transfer by...Ch. 14 - Find the net rate of heat transfer by radiation...Ch. 14 - Suppose you walk into a sauna that has an ambient...Ch. 14 - Thermography is a technique for measuring radiant...Ch. 14 - The Sun radiates like a perfect black body with an...Ch. 14 - A large body of lava from a volcano has stopped...Ch. 14 - Calculate the temperature the entire sky would...Ch. 14 - (a) A shirtless rider under a circus tent feels...Ch. 14 - Integrated Concepts One 30.0C day the relative...Ch. 14 - Integrated Concepts Large meteors sometimes strike...Ch. 14 - Integrated Concepts Frozen waste from airplane...Ch. 14 - €69. Integrated Concepts (a) A large electrical...Ch. 14 - Integrated Concepts (a) Suppose you start a...Ch. 14 - Integrated Concepts A 76.0-kg person suffering...Ch. 14 - Integrated Concepts In certain large geographic...Ch. 14 - Integrated Concepts Heat transfers from your lungs...Ch. 14 - Integrated Concepts (a) What is the temperature...Ch. 14 - Integrated Concepts Hot air rises because it has...Ch. 14 - Unreasonable Results (a) What is the temperature...Ch. 14 - Unreasonable Results A slightly deranged Arctic...Ch. 14 - Unreasonable Results (a) Calculate the rate of...Ch. 14 - Unreasonable Results A meteorite 1.20 cm in...Ch. 14 - Construct Your Own Problem Consider a new model of...Ch. 14 - Construct Your Own Problem Consider a person...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
3. Suppose the door of a room makes an airtight, but frictionless, fit in its frame. Do you think you could ope...
College Physics (10th Edition)
8. A 1000 kg car pushes a 2000 kg truck that has a dead battery. When the driver steps on the accelerator, the ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
Set up the circuit containing two bulbs in series as shown. Rank from largest to smallest the currents through ...
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Give an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to do work. What happens to the system's entropy in this process?arrow_forwardWhen heat transfers into a system, is the energy stored as heat? Explain briefly.arrow_forwardCalculate the increase in entropy of the Universe when you add 20.0 g of 5.00C cream to 200 g of 60.0C coffee. Assume that the specific heats of cream and coffee are both 4.20J/g C.arrow_forward
- Explain how water’s entropy can decrease when it freezes without violating the second law of thermodynamics. Specifically, explain what happens to the entropy of its surroundings.arrow_forwardThis problem compares the energy output and heat transfer to the environment by two different types of nuclear power stationsone with the normal efficiency of 34.0%, and another with an improved efficiency of 40.0%. Suppose both have the same heat transfer into the engine in one day. 2.501014J. (a) How much more electrical energy is produced by the more efficient power station? (b) How much less heat transfer occurs to the environment by the more efficient power station? (One type of more ef?cient nuclear power station, the gas—cooled reactor, has not been reliable enough to be economically feasible in spite of its greater eficiency.)arrow_forwardA 65-g ice cube is initially at 0.0C. (a) Find the change in entropy of the cube after it melts completely at 0.0C. (b) What is the change in entropy of the environment in this process? Hint: The latent heat of fusion for water is 3.33 105 J/kg.arrow_forward
- Use a PV diagram such as the one in Figure 22.2 (page 653) to figure out how you could modify an engine to increase the work done.arrow_forwardA heat pump used for heating shown in Figure P18.25 is essentially an air conditioner installed backward. It extracts energy from colder air outside and deposits it in a warmer room. Suppose the ratio of the actual energy entering the room to the work done by the devices motor is 10.0% of the theoretical maximum ratio. Determine the energy entering the room per joule of work done by the motor given that the inside temperature is 20.0C and the outside temperature is 5.00C. Figure P18.25arrow_forwardYou are working on a summer job at a company that designs non-traditional energy systems. The company is working on a proposed electric power plant that would make use of the temperature gradient in the ocean. The system includes a heat engine that would operate between 20.0C (surface-water temperature) and 5.00C (water temperature at a depth of about 1 km). (a) Your supervisor asks you to determine the maximum efficiency of such a system. (b) In addition, if the electric power output of the plant is 75.0 MW and it operates at the maximum theoretically possible efficiency, you must determine the rate at which energy is taken in from the warm reservoir. (c) From this information, if an electric bill for a typical home shows a use of 950 kWh per month, your supervisor wants to know how many homes can be provided with power from this energy system operating at its maximum efficiency. (d) As energy is drawn from the warm surface water to operate the engine, it is replaced by energy absorbed from sunlight on the surface. If the average intensity absorbed from sunlight is 650 W/m2 for 12 daylight hours on a clear day, you need to find the area of the ocean surface that is necessary for sunlight to replace the energy absorbed into the engine. (e) From this information, you need to determine if there is enough ocean surface on the Earth to use such engines to supply the electrical needs for all the homes associated with the Earths population. Assume the energy use for a home in part (c) is an average over the entire planet. (f) In view of your results in this problem, your supervisor has asked for your conclusion as to whether such a system is worthwhile to pursue. Note that the fuel (sunlight) is free.arrow_forward
- A 4ton air conditioner removes 5.60107J (48,000 British thermal units) from a cold environment in 1.00 h. (a) What energy input in joules is necessary to do this if the air conditioner has an energy efficiency rating (EER) of 12.0? (b) What is the cost of doing this if the work costs 10.0 cents per 3.60106J (one kilowatt—hour)? (c) Discuss whether this cost seems realistic. Note that the energy efficiency rating (EER) of an air conditioner or refrigerator is defined to be the number of British thermal units of heat transfer from a cold environment per hour divided by the watts of power input.arrow_forward(a) How much heat transfer occurs from 20.0 kg of 90.0C water placed in contact with 20.0 kg of 10.0C water, producing a final temperature of 50.0C ? (b) How much work could a Carnot engine do with this heat transfer, assuming it operates between two reservoirs at constant temperatures of 90.0C and 10.0C ? (c) What increase in entropy is produced by mixing 20.0 kg of 90.0C water with 20.0 kg of 10.0C water? (d) Calculate the amount of work made unavailable by this mixing using a low temperature of 10.0C, and compare it with the work done by the Garnet engine. Explicitly show how you follow the steps in the Problem-Solving Strategies for Entropy. (e) Discuss how everyday processes make increasingly more energy unavailable to do work, as implied by this problem.arrow_forwardWhich of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY