Variation of the rate constant with temperature for the first-order reaction:
is given in the following table. Determine graphically the activation energy for the reaction.
T(K) |
k(s-1) |
298 |
|
308 |
|
318 |
|
328 |
|
338 |
|
Interpretation:
The activation energy of the given reaction is to be determined graphically.
Concept introduction:
Activation energy is the minimum energy required to initiate a reaction. It is calculated by Arrhenius equation. The higher the activation energy of the reaction, the more is the energy required for the initiation of the reaction, and slower is the rate of reaction.
Activation energy can be calculated by Arrhenius equation.
Here,
Slope of the graph is calculated by the expression given as:
Here,
According to Arrhenius equation, the slope is equal to the expression given as:
Here,
Answer to Problem 48QP
Solution:
Explanation of Solution
Given information:
The data corresponding to the reaction is given as follows:
Taking the natural log for each value of
The plot between
Slope of the graph is calculated by the expression given as follows:
Here,
Substitute the values of
According to Arrhenius equation, the slope is equal to the expression given as follows:
Here,
Rearrange the above equation for activation energy as,
The value of activation energy is
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry
- The decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward
- (Section 11-5) A rule of thumb is that for a typical reaction, if concentrations are unchanged, a 10-K rise in temperature increases the reaction rate by two to four times. Use an average increase of three times to answer the questions below. (a) What is the approximate activation energy of a typical chemical reaction at 298 K? (b) If a catalyst increases a chemical reactions rate by providing a mechanism that has a lower activation energy, then what change do you expect a 10-K increase in temperature to make in the rate of a reaction whose uncatalyzed activation energy of 75 kJ/mol has been lowered to one half this value (at 298 K) by addition of a catalyst?arrow_forwardAmmonium cyanate, NH4NCO, rearranges in water to give urea, (NH2)2CO. NH4NCO(aq) (NH2)2CO(aq) Using the data in the table: (a) Decide whether the reaction is first-order or second-order. (b) Calculate k for this reaction. (c) Calculate the half-life of ammonium cyanate under these conditions. (d) Calculate the concentration of NH4NCO after 12.0 hours.arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- The following rate constants were obtained in an experiment in which the decomposition of gaseous N2O; was studied as a function of temperature. The products were NO, and NO,. Temperature (K) 3.5 x 10_i 298 2.2 x 10"4 308 6.8 X IO-4 318 3.1 x 10 1 328 Determine Etfor this reaction in kj/mol.arrow_forwardThe element Co exists in two oxidation states, Co(II) and Co(III), and the ions form many complexes. The rate at which one of the complexes of Co(III) was reduced by Fe(II) in water was measured. Determine the activation energy of the reaction from the following data: T(K) k (s-1) 293 0.054 298 0.100arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forward
- In Exercise 11.39, if the initial concentration of N2Oj is 0.100 .\1. how long will it take for the concentration to drop to 0.0100 times its original value? The decomposition of N2O5 in solution in carbon tetrachloride is a first-order reaction: 2N2O5—»4NO2 + O2 The rate constant at a given temperature is found to be 5.25 X 10-4 s-’. If the initial concentration of N2O5 is 0.200 M, what is its concentration after exactly 10 minutes have passed?arrow_forwardFor the reaction of iodine atoms with hydrogen molecules in the gas phase, these rate constants were obtained experimentally. 2I(g) + H2(g) 2HI(g) (a) Calculate the activation energy and frequency factor for this reaction. (b) Estimate the rate constant of the reaction at 400.0 K.arrow_forwardThe following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning