Polyethylene is used in many items, including water pipes, bottles, electrical insulation, toys, and mailer envelopes. It is a
The R •� species (called a radical) reacts with an ethylene molecule (M) to generate another radical:
The reaction of
This step can be repeated with hundreds of monomer units. The propagation terminates when two radicals combine:
The initiator frequently used in the
This is a first-order reaction. The half-life of benzoyl peroxide at
Interpretation:
The rate constant, activation energy, and the rate law of reaction are to be determined.
Concept introduction:
At a given temperature, the concentration ratio of concentration of product to concentration of reactant in a chemical reaction is called rate constant. According to the Arrhenius equation, rate constant depends on temperature.
The amount of energy required for the reaction to form products by the formation of an activated complex is called activation energy.
Half-life: The time required for the concentration of a reactant to decrease to one-half its initial value. This period of time is called the half-life of the reaction, written as
The relation between rate constant k and half-life is
Answer to Problem 135AP
Solution:
a)
b)
c)
d) A higher rate of propagation step and a lower rate of termination step.
Explanation of Solution
Given information: The initiation step is as follows:
The reaction of
The propagation terminates when two radicals combine as follows:
a) The rate constant
The relation between the rate constant and half-life is given as follows:
The value of
is given as
The rate constant for the reaction is
b) The activation energy
The half-life of benzoyl peroxide is
The rate constant for the reaction at
There are two values of rate constants
Here,
Substitute the values
The activation energy for the reaction is
c) The rate laws to be written for elementary steps in the preceding polymerization process and identify the reactant, product, and intermediates.
The rate law for the initiation step is as follows:
The rate law for the propagation step is as follows:
The rate law for the propagation step is as follows:
The ethylene monomers are the reactant molecules, and polyethylene is a product in the reaction mechanism. The intermediates are formed in the early elementary step and consumed in the next step. So, the intermediates are radicals of
d) The condition that favor the growth of long, high-molar-mass polyethylenes.
A higher rate of propagation and a lower rate of termination are favoured when the growth of long polymers take place. In the propagation step, the rate law is dependent on the concentration of monomer. If the concentration of ethylene is increased, the propagation rate also increases.
The concentration of radical fragments
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry
- Based on the kinetic theory of matter, what would the action of a catalyst do to a reaction that is the reverse of some reaction that we say is catalyzed?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardOzone, O3, in the Earths upper atmosphere decomposes according to the equation 2 O3(g) 3 O2(g) The mechanism of the reaction is thought to proceed through an initial fast, reversible step followed by a slow, second step. Step 1: Fast, reversible O3(g) O2(g) + O(g) Step 2: Slow O3(g) + O(g) 2 O2(g) (a) Which of the steps is rate-determining? (b) Write the rate equation for the rate-determining steparrow_forward
- The isomerization of cyclopropane, C3H6, is believed to occur by the mechanism shown in the following equations: C3H6+C3H5k1C3H6+C3H6(Step1)C3H6k2C2=CHCH3(Step2) Here C3H6 is an excited cyclopropane molecule. At low pressure, Step 1 is much slower than Step 2. Derive the rate law for this mechanism at low pressure. Explain.arrow_forwardIsomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardCyclopropane, C3H6, is converted to its isomer propylene, CH2CHCH3, when heated. The rate law is first order in cyclopropane, and the rate constant is 6.0 104/s at 500C. If the initial concentration of cyclopropane is 0.0226 mol/L, what is the concentration after 525 s?arrow_forward
- The thermal decomposition of nitryl chloride, NO2Cl, 2NO2Cl(g)2NO2(g)+Cl2(g) is thought to occur by the mechanism shown in the following equations: NO2Clk1NO2+Cl(slowstep)NO2Cl+Clk2NO2+Cl2(faststep) What rate law is predicted by this mechanism?arrow_forwardCandle wax is a mixture of hydrocarbons. In the reaction of oxygen with candle w ax in Figure 11.2, the rate of consumption of oxygen decreased with time after the flask was covered, and eventually' the flame went out. From the perspective of the kinetic-molecular theory, describe what is happening in the flask. FIGURE 11.2 When a candle burns in a closed container, the flame will diminish and eventually go out. As the amount of oxygen present decreases, the rate of combustion will also decrease. Eventually, the rate of combustion is no longer sufficient to sustain the flame even though there is still some oxygen present in the vessel.arrow_forwardGiven the following mechanism for a chemical reaction: H2O2+IH2O+IOH2O2+IOH2O+O2+I a Write the overall reaction. b Identify the catalyst and the reaction intermediate. c With the information given in this problem, can you write the rate law? Explain.arrow_forward
- Give at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardThe reaction 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) was studied at 904 C, and the data in the table were collected. (a) Determine the order of the reaction for each reactant. (b) Write the rate equation for the reaction. (c) Calculate the rate constant for the reaction. (d) Find the rate of appearance of N2 at the instant when [NO] = 0.350 mol/L and [H] = 0.205 mol/L.arrow_forwardA study of the rate of dimerization of C4H6 gave the data shown in the table: 2C4H6C8H12 (a) Determine the average rate of dimerization between 0 s and 1600 s, and between 1600 s and 3200 s. (b) Estimate the instantaneous rate of dimerization at 3200 s from a graph of time versus [C4H6]. What are the units of this rate? (c) Determine the average rate of formation of C8H12 at 1600 s and the instantaneous rate of formation at 3200 s from the rates found in parts (a) and (b).arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning