Consider the systems shown in Figure 5.10. In one case the battery becomes completely discharged by running the current through a heater, and in the other case by running a fan. Both processes occur at constant pressure. In both cases the change in state of the system is the same: The battery goes from being fully charged to being fully discharged. Yet in one case the heat evolved is large, and in the other it is small. Is the enthalpy change the same in the two cases? If not, how can enthalpy be considered a state function? If it is, what can you say about the relationship between enthalpy change and q in this case, as compared with others that we have considered?
Consider the systems shown in Figure 5.10. In one case the battery becomes completely discharged by running the current through a heater, and in the other case by running a fan. Both processes occur at constant pressure. In both cases the change in state of the system is the same: The battery goes from being fully charged to being fully discharged. Yet in one case the heat evolved is large, and in the other it is small. Is the enthalpy change the same in the two cases? If not, how can enthalpy be considered a state function? If it is, what can you say about the relationship between enthalpy change and q in this case, as compared with others that we have considered?
Consider the systems shown in Figure 5.10. In one case the battery becomes completely discharged by running the current through a heater, and in the other case by running a fan. Both processes occur at constant pressure. In both cases the change in state of the system is the same:
The battery goes from being fully charged to being fully discharged. Yet in one case the heat evolved is large, and in the other it is small. Is the enthalpy change the same in the two cases? If not, how can enthalpy be considered a state function? If it is, what can you say about the relationship between enthalpy change and q in this case, as compared with others that we have considered?
Saved v
Question: I've done both of the graphs and generated an equation from excel, I just need help
explaining A-B. Below is just the information I used to get the graphs obtain the graph please help.
Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on
the horizontal axis and the second with absorption on the vertical axis and concentration on the
horizontal axis.
Solution #
Unknown
Concentration (mol/L)
Transmittance
Absorption
9.88x101
635
0.17
1.98x101
47%
0.33
2.95x101
31%
0.51
3.95x10
21%
0.68
4.94x10
14%
24%
0.85
0.62
A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you
arrived at your equation.
B.) What is the relationship between the percent transmission and the absorption?
C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit
trend-line (least squares analysis) of the graph that yielded a straight…
Don't used Ai solution
Calculate the differences between energy levels in J, Einstein's coefficients of estimated absorption and spontaneous emission and life time media for typical electronic transmissions (vnm = 1015 s-1) and vibrations (vnm = 1013 s-1) . Assume that the dipolar transition moments for these transactions are in the order of 1 D.Data: 1D = 3.33564x10-30 C m; epsilon0 = 8.85419x10-12 C2m-1J-1
Chapter 14 Solutions
Chemistry: The Central Science, Books a la Carte Edition & Solutions to Red Exercises for Chemistry & Mastering Chemistry with Pearson eText -- Access Card Package
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY