
Concept explainers
(a)
Find the inverse Laplace transform for the given function
(a)

Answer to Problem 31E
The inverse Laplace transform for the given function is
Explanation of Solution
Given data:
Consider the Laplace transform function is,
Formula used:
Write the general expression for the inverse Laplace transform.
Calculation:
Expand
Here,
A, B, and C are the constants.
Find the constants by using algebraic method.
Consider the partial fraction,
Put
Put
Put
Subtract equation (5) and (6),
Substitute 1 for C in the above equation.
Substitute
Substitute
Apply inverse Laplace transform of equation (2) in equation (8).
Write the general expression to find the inverse Laplace transform function.
Write the general expression to find the inverse Laplace transform function.
Apply inverse Laplace transform function of equation (9) and (10), in equation (8).
Conclusion:
Thus, the inverse Laplace transform for the given function is
(b)
Find the inverse Laplace transform for the given function
(b)

Answer to Problem 31E
The inverse Laplace transform for the given function is
Explanation of Solution
Given data:
Consider the Laplace transform function is,
Calculation:
The equation (11) can be rewritten as follows,
Expand
Here,
A, B, C are the constants.
Find the constants by using algebraic method.
Consider the partial fraction,
Put
Expanding equation (14) as follows,
Substitute
Equating the coefficient of
Equating the coefficient of constant term in equation (15).
Susbtitute 0 for A in the above equation.
Substitute 0 for A, 1 for B, and
Write the general expression to find the inverse Laplace transform function.
Apply inverse Laplace transform function of equation (10) and (17), in equation (16).
Conclusion:
Thus, the inverse Laplace transform for the given function is
(c)
Find the inverse Laplace transform for the given function
(c)

Answer to Problem 31E
The inverse Laplace transform for the given function is
Explanation of Solution
Given data:
Consider the Laplace transform function is,
Calculation:
Expand
Here,
A, B, C, and D are the constants.ind the constants by using algebraic method.
Consider the partial fraction,
Substitute
Substitute
Substitute
Apply inverse Laplace transform of equation (2) in equation (21).
Apply inverse Laplace transform function of equation (9) in equation (22).
Conclusion:
Thus, the inverse Laplace transform for the given function is
(d)
Verify the functions given in Part (a), Part (b), and Part (c) with MATLAB.
(d)

Answer to Problem 31E
The given functions are verified with MATLAB.
Explanation of Solution
Calculation:
Consider the function given in Part (a).
The MATLAB code for the given function:
syms s t
ilaplace(1/(s+2)/(s+2)/(s+1))
MATLAB output:
Consider the function given in Part (b).
The MATLAB code for the given function:
syms s t
ilaplace(s/(s+2)/(s+2)/(s+2))
MATLAB output:
Consider the function given in Part (c).
The MATLAB code for the given function:
syms s t
ilaplace(1/(s*s+8*s+7))
MATLAB output:
Conclusion:
Thus, the given functions are verified with MATLAB.
Want to see more full solutions like this?
Chapter 14 Solutions
Engineering Circuit Analysis
- not use ai pleasearrow_forward17- In 8085 name the 16 bit registers. a) Program Counter b) Stack Pointer c) a and b d) Instruction Register 18- In response to RST 7.5 interrupt, the execution of control transfers to memory location. a) 0000H b) 003CH c) 002CH d) 0034H 19- Let contents of accumulator and B are 00000100 and 01000000 respectively. After execution of SUB B instruction, accumulator contents are a) 11000100 b) 01000000 c) 010001000 d) 00000100arrow_forward1.) A single instruction to clear the lower 4 bits of accumulator in 8085 alp is, a) XRI FOH b) XRI OFH c) ANI OFH d) ANI FO 2.) The status of Z, AC, CY flags after execution of following instructions are, MVI A, A9H MVI B, 57H ADD B HLT a) 0,1,1 b) 1,0,0 c) 1,1,1 d) 1,0,1 3.) Consider the loop: LXI H 000A MVI C OB LOOP: DCX H DCR C JNZ LOOP HLT This loop will be executed by: a) infinite times b) 11 time c) 10 times d) 1 timearrow_forward
- Fundamentals Of Energy Systems HW 6 Q6arrow_forwardFundamentals Of Energy Systems HW 6 Q4arrow_forward1. For the 2-dimensional lattice shown in the following figure, using the two sets of given primitive translation vectors to write the translation vectors that can translate lattice point A to point B. (10 pts) (1) (2) (1) T= (2) T T=arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





