Concept explainers
(a)
Domain of the given
Answer to Problem 1CRE
Solution:
Domain of the given vector-valued function is .
Explanation of Solution
Given:
We have been given a vector valued function:
Key concepts used:
Domain of a rational function is all real numbers except when denominator is zero. Domain of inverse sine function is
Calculation:
In order to find the domain of a vector valued function, we find the domains of all the components of the vector function and then we consider the intersection of all the domains.
Domain of the first component is all real numbers except 0. Thus, domain of the first component is .
Domain of the second component is all real numbers except . Thus, domain of the second component is .
Domain of the third component is .
For writing the domain of the entire vector valued function, we consider the intersection of all three domains. Thus, the domain of the given vector valued function is .
Conclusion:
The domain of the given vector valued function has been found by first finding the domains of each of the components and then considering the intersection.
(b)
Domain of the given vector valued function.
Answer to Problem 1CRE
Solution:
Domain of the given vector-valued function is .
Explanation of Solution
Given:
We have been given a vector valued function:
Key concepts used:
Domain of a rational function is all real numbers except when denominator is zero. Domain of inverse sine function is
Calculation:
In order to find the domain of a vector valued function, we find the domains of all the components of the vector function and then we consider the intersection of all the domains.
Domain of the first component is .
Domain of the second component is .
Domain of the third component is .
For writing the domain of the entire vector valued function, we consider the intersection of all three domains. Thus, the domain of the given vector valued function is .
Conclusion:
The domain of the given vector valued function has been found by first finding the domains of each of the components and then considering the intersection.
Want to see more full solutions like this?
Chapter 14 Solutions
CALCULUS 4E (LL) W/ ACHIEVE ACCESS
- Consider the graphs of y = f(x) and y = g(x) in the given diagram y= f(x). y = g(x) Evaluate (f+g)(2) -5 Determine all for which g(x) < f(x) Determine all for which f(x) +3 = g(x)arrow_forwardI) For what value(s) of x does g(x) = -4? Separate multiple answers with commas as needed. J) Give the interval(s) of such that g(x) > 0. Use the union symbol between multiple intervals. K) Give the interval(s) of such that g(x) <0. Use the union symbol between multiple intervals.arrow_forwardneed help on Barrow_forward
- 4. Use the properties of limits to help decide whether each limit exists. If a limit exists, fi lim (2x²-4x+5) a) x-4 b) lim 2 x²-16 x-4x+2x-8arrow_forward7. The concentration of a drug in a patient's bloodstream h hours after it was injected is given by 0.17 h Ah= h²+2' Find and interpret lim A(h). Remember, the answers to word problems should always be given in a complete h→00 sentence, with proper units, in the context of the problem.arrow_forward#2arrow_forward
- 2. We want to find the inverse of f(x) = (x+3)² a. On the graph at right, sketch f(x). (Hint: use what you know about transformations!) (2 points) b. What domain should we choose to get only the part of f (x) that is one- to-one and non-decreasing? Give your answer in inequality notation. (2 points) - c. Now use algebra to find f¯¹ (x). (2 points) -4- 3- 2 1 -4 -3 -2 -1 0 1 -1- -2- --3- -4 -N- 2 3 4arrow_forward1. Suppose f(x) = 2 4 == x+3 and g(x) = ½-½. Find and fully simplify ƒ(g(x)). Be sure to show all x your work, write neatly so your work is easy to follow, and connect your expressions with equals signs. (4 points)arrow_forwardFind the ane sided limit lim 2 x+1-3x-3arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning