![ENGINEERING FUNDAMENTALS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337705011/9781337705011_smallCoverImage.gif)
Concept explainers
Create a table that shows the windchill temperatures for the given range of ambient air temperature and wind speed.
![Check Mark](/static/check-mark.png)
Answer to Problem 19P
A table is created for the windchill temperatures with the given range of ambient air temperature and wind speed by using excel.
Explanation of Solution
Given data:
The range of ambient air temperature is
The range of wind speed is
Formula used:
Formula to calculate the more common equivalent windchill temperatures is,
Here,
Calculation:
Refer to the Figure 1:
Column A shows the wind speed (V) with range from
For the cell B9, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$9)^0.5)+10.45-(0.28*$A$9))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
For the cell B10, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$10)^0.5)+10.45-(0.28*$A$10))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
For the cell B11, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$11)^0.5)+10.45-(0.28*$A$11))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
For the cell B12, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$12)^0.5)+10.45-(0.28*$A$12))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
For the cell B13, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$13)^0.5)+10.45-(0.28*$A$13))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
For the cell B14, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$14)^0.5)+10.45-(0.28*$A$14))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
For the cell B15, the formula used to find the equivalent windchill temperatures as “
Written as “=(0.045*((5.27*($A$15)^0.5)+10.45-(0.28*$A$15))*(B8-33))+33”. Here, B8 cell represents the value of ambient air temperature is
Table 1 is created to shows a Wind Chill Temperature.
Table 1
Wind speed (Km/h) | Ambient Temperature | ||||||||
-30 | -25 | -20 | -15 | -10 | -5 | 0 | 5 | 10 | |
20 | -47.6 | -41.2 | -34.8 | -28.4 | -22.0 | -15.6 | -9.2 | -2.8 | 3.6 |
30 | -54.6 | -47.7 | -40.7 | -33.8 | -26.8 | -19.9 | -12.9 | -6.0 | 1.0 |
40 | -59.4 | -52.0 | -44.7 | -37.4 | -30.0 | -22.7 | -15.4 | -8.1 | -0.7 |
50 | -62.6 | -55.0 | -47.4 | -39.8 | -32.2 | -24.7 | -17.1 | -9.5 | -1.9 |
60 | -64.7 | -57.0 | -49.2 | -41.5 | -33.7 | -25.9 | -18.2 | -10.4 | -2.7 |
70 | -66.1 | -58.2 | -50.3 | -42.5 | -34.6 | -26.8 | -18.9 | -11.0 | -3.2 |
80 | -66.8 | -58.8 | -50.9 | -43.0 | -35.1 | -27.2 | -19.3 | -11.3 | -3.4 |
Figure 2 shows a wind chill table in the excel sheet has obtained as similar to given Problem 14.19 in the textbook
Conclusion:
Hence, a table is created for the windchill temperatures with the given range of an ambient air temperature, and wind speed have been explained using excel.
Want to see more full solutions like this?
Chapter 14 Solutions
ENGINEERING FUNDAMENTALS
- The tension in cable BA is 10 kN. The questions will lead you toward determining the moment of the force acting from B to A about the x-axis. Hints: Pay attention to the orientation of the XYZ coordinate axes. 1000 mm A (400, 300, 0) mm 600 mm xarrow_forwardThe beam shown in the figure below is typical for a floor system in an existing building.It needs to carry a uniform live load of 260 lb/ft and a uniform dead weight of 400 lb/ft,including its own weight. The owner wants to add a partition weighing 7 kip (live load) asshown. Assuming the added partition as live load, is the beam section adequate to safelycarry the extra live load?PartitionStirrups15 ft 3 in.14 in.a. Determine the d e s i g n m o m e n t c a p a c i t y .b. D e t e r m i n e t h e f a c t o r e d a p p l i e d b e n d i n g m o m e n t .c. Is the beam safe and adequate for bending? Please explain your response.arrow_forward4. Use the influence function method to draw the influence line for the shear just to the right of A. Assume C is fixed, A is a roller, and B is a pin. 8 ft A 16 ft B 10 ft-arrow_forward
- 4-39. Draw the shear and moment diagrams for each of the three members of the frame. Assume the frame is pin connected at A, C, and D and there is a fixed joint at B. 4 m 50 kN 40 kN -1.5 m -2 m 1.5 B 15 kN/m 6 m Darrow_forwardAggregates from three sources having the properties shown in Table P5.41were blended at a ratio of 25:60:15 by weight. Determine the properties of theaggregate blend.arrow_forward7-7. Determine the equations of the elastic curve for the beam using the x and x, coordinates. Specify the beam's maximum deflection. El is constant. 22arrow_forward
- The cantilever beam shown below supports a uniform service (unfactored) dead load of 1.5 kip/ft plus its own self weight, plus two unknown concentrated service (unfactored) live loads, as shown. The concrete has f’c = 6,000 psi and the steel yield strength is 60 ksi. a. Determine the design moment capacity. b. Set up the applied bending moment capacity. c. Calculate maximum safe concentrated live load that the beam may carry.arrow_forwardThe circular slab of radius r supported by four columns, as shown in figure, is to be isotropically reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a concentrated factored load of P kN applied at the center of the slab. Solve by using equilibrium m m Columnarrow_forwardBy using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a uniform load (q). Solve by using equilibrium method m marrow_forward
- By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a concentrated factored load of P. Solve by Using equilibrium method m m 8/arrow_forwardH.W: Evaluate the integral 1. 30 √ · √(x²y – 2xy)dydx 0-2 3 1 3. (2x-4y)dydx 1-1 2π π 5. (sinx + cosy)dxdy π 0 0 1 ƒ ƒ (x + 2. +y+1)dxdy 4. -1-1 41 ][ 20 x²ydxdyarrow_forwardExample 5 By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab (supports on two S.S sides shown in figure under the load (P) (all dimensions are in mm). Solve by using equilibrium method Please solve by using equilibrium method m m 3000 2000 2000arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)