(a)
Interpretation:
The expression for the root-mean-square separation has to be derived. The root-mean-square separation for a flexible chain with
Concept introduction:
The one dimensional freely jointed chain is said to be the primary structure of the macromolecule. The primary structure of the macromolecule is the sequence of the residues which make up the macromolecule.
(a)

Answer to Problem 14D.2P
The expression for the root-mean-square separation has been derived. The root-mean-square separation for a flexible chain with
Explanation of Solution
The probability function for a three dimension flexible chain with radius
In the above equation the constant
The square of the root mean square separation is given by the equation as shown below.
Substitute equation (1) in equation (2) and integrate as shown below.
Use the standard integral
Substitute the value of
For the value of root-mean-square separation for a flexible chain, substitute with
Therefore, the root-mean-square separation for a flexible chain with
(b)
Interpretation:
The expression for the mean separation of the ends has to be derived. The mean separation of the ends for a flexible chain with
Concept introduction:
The same concept introduction as in subpart (a).
(b)

Answer to Problem 14D.2P
The expression for the mean separation of the ends has been derived. The mean separation of the ends for a flexible chain with
Explanation of Solution
The probability function for a three dimension flexible chain with radius
In the above equation the constant
The mean separation of the ends is given by the equation as shown below.
Substitute equation (1) in equation (3) and integrate as shown below.
Use the standard integral
Substitute the value of
For the value of mean separation of the ends for a flexible chain, substitute with
Therefore, the mean separation of the ends for a flexible chain with
(c)
Interpretation:
The most probable separation has to be derived. The most probable separation for a flexible chain with
Concept introduction:
The same concept introduction as in subpart (i).
(c)

Answer to Problem 14D.2P
The most probable separation is derived. The most probable separation for a flexible chain with
Explanation of Solution
The most probable separation is given by the value of
The value at which
Substitute equation (1) in equation (4).
Equate the above expression with zero and solve for
Substitute the value of
For the value of most probable separation for a flexible chain, substitute with
Therefore, the most probable separation for a flexible chain, substitute with
Want to see more full solutions like this?
Chapter 14 Solutions
PHYSICAL CHEMISTRY. VOL.1+2 (LL)(11TH)
- Q5: Label each chiral carbon in the following molecules as R or S. Make sure the stereocenter to which each of your R/S assignments belong is perfectly clear to the grader. (8pts) R OCH 3 CI H S 2pts for each R/S HO R H !!! I OH CI HN CI R Harrow_forwardCalculate the proton and carbon chemical shifts for this structurearrow_forwardA. B. b. Now consider the two bicyclic molecules A. and B. Note that A. is a dianion and B. is a neutral molecule. One of these molecules is a highly reactive compound first characterized in frozen noble gas matrices, that self-reacts rapidly at temperatures above liquid nitrogen temperature. The other compound was isolated at room temperature in the early 1960s, and is a stable ligand used in organometallic chemistry. Which molecule is the more stable molecule, and why?arrow_forward
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





