The spirit-in-glass thermometer , invented in Florence, Italy, around 1654, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P14.41). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm 3 at 20.0ºC and decreases to 0.780 97 g/cm 3 at 30.0ºC. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium halfway up the tube at 20.0ºC, determine its mass. (b) When the temperature increases to 30.0ºC, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0ºC, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere? Figure P14.41
The spirit-in-glass thermometer , invented in Florence, Italy, around 1654, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P14.41). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm 3 at 20.0ºC and decreases to 0.780 97 g/cm 3 at 30.0ºC. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium halfway up the tube at 20.0ºC, determine its mass. (b) When the temperature increases to 30.0ºC, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0ºC, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere? Figure P14.41
Solution Summary: The author explains the mass of the sphere at the tube and the density of ethyl alcohol.
The spirit-in-glass thermometer, invented in Florence, Italy, around 1654, consists of a tube of liquid (the spirit) containing a number of submerged glass spheres with slightly different masses (Fig. P14.41). At sufficiently low temperatures, all the spheres float, but as the temperature rises, the spheres sink one after another. The device is a crude but interesting tool for measuring temperature. Suppose the tube is filled with ethyl alcohol, whose density is 0.789 45 g/cm3 at 20.0ºC and decreases to 0.780 97 g/cm3 at 30.0ºC. (a) Assuming that one of the spheres has a radius of 1.000 cm and is in equilibrium halfway up the tube at 20.0ºC, determine its mass. (b) When the temperature increases to 30.0ºC, what mass must a second sphere of the same radius have to be in equilibrium at the halfway point? (c) At 30.0ºC, the first sphere has fallen to the bottom of the tube. What upward force does the bottom of the tube exert on this sphere?
2.62 Collision. The engineer of a passenger train traveling at
25.0 m/s sights a freight train whose caboose is 200 m ahead on the
same track (Fig. P2.62). The freight train is traveling at 15.0 m/s in the
same direction as the passenger train. The engineer of the passenger
train immediately applies the brakes, causing a constant acceleration
of 0.100 m/s² in a direction opposite to the train's velocity, while the
freight train continues with constant speed. Take x = 0 at the location
of the front of the passenger train when the engineer applies the brakes.
(a) Will the cows nearby witness a collision? (b) If so, where will it take
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
Can I get help with how to calculate total displacement? The answer is 78.3x-4.8y
2.70 Egg Drop. You are on the Figure P2.70
roof of the physics building, 46.0 m
above the ground (Fig. P2.70). Your
physics professor, who is 1.80 m tall,
is walking alongside the building at
a constant speed of 1.20 m/s. If you
wish to drop an egg on your profes-
sor's head, where should the profes-
sor be when you release the egg?
Assume that the egg is in free fall.
2.71 CALC The acceleration
of a particle is given by ax(t) =
-2.00 m/s² +(3.00 m/s³)t. (a)
Find the initial velocity Vox such that
v = 1.20 m/s
1.80 m
46.0 m
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.