On October 21, 2001, Ian Ashpole of the United Kingdom achieved a record altitude of 3.35 km (11 000 ft) powered by 600 toy balloons filled with helium. Each filled balloon had a radius of about 0.50 m and an estimated mass of 0.30 kg. (a) Estimate the total buoyant force on the 600 balloons. (b) Estimate the net upward force on all 600 balloons. (c) Ashpole parachuted to the Earth after the balloons began to burst at the high altitude and the buoyant force decreased. Why did the balloons burst?
Trending nowThis is a popular solution!
Chapter 14 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Additional Science Textbook Solutions
University Physics (14th Edition)
Fundamentals Of Thermodynamics
Life in the Universe (4th Edition)
College Physics
Physical Science
Fundamentals of Physics Extended
- The gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forwardBird bones have air pockets to reduce their weight—this also gives them an average density significantly less than that of the bones of other animals. Suppose an ornithologist weighs a bird bone air and in water and finds its mass is 45.0 g ad its apparent mass when submerged is 3.60 g (assume the bone is watertight.)(a) What mass of is displaced? (b) What is the volume of the bone? (c) What is its average density?arrow_forwardA spherical weather balloon is filled with hydrogen until its radius is 3.00 m. Its total mass including the instruments it carries is 15.0 kg. (a) Find the buoyant force acting on the balloon, assuming the density of air is 1.29 kg/m3. (b) What is the net force acting on the balloon and its instruments after the balloon is released from the ground? (c) Why does the radius of the balloon tend to increase as it rises to higher altitude?arrow_forward
- In an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air an apparent mass of 0.0850 kg completely submerged with lungs empty. (a) What of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.7S L, is she able to that without treading water with her lungs filled air?arrow_forwardIn an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air and an apparent mass of 0.0850 kg when completely submerged with lungs empty. (a) What mass of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.75 L is she able to float without treading water with her lungs filled with air?arrow_forwardA 62.0-kg survivor of a cruise line disaster rests atop a block of Styrofoam insulation, using it as a raft. The Styrofoam has dimensions 2.00 m 2.00 m 0.090 0 m. The bottom 0.024 m of the raft is submerged. (a) Draw a force diagram of the system consisting of the survivor and raft. (b) Write Newtons second law for the system in one dimension, using B for buoyancy, w for the weight of the survivor, and wr for the weight of the raft. (Set a = 0.) (c) Calculate the numeric value for the buoyancy, B. (Seawater has density 1 025 kg/m3.) (d) Using the value of B and the weight w of the survivor, calculate the weight w, of the Styrofoam. (e) What is the density of the Styrofoam? (f) What is the maximum buoyant, force, corresponding to the raft being submerged up to its top surface? (g) What total mass of survivors can the raft support?arrow_forward
- A 1.00-kg beaker containing 2.00 kg of oil (density = 916.0 kg/m3) rests on a scale. A 2.00-kg block of iron suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forwardA beaker of mass mb containing oil of mass mo and density o rests on a scale. A block of iron of mass mFe suspended from a spring scale is completely submerged in the oil as shown in Figure P15.63. Determine the equilibrium readings of both scales. Figure P15.63 Problems 63 and 64.arrow_forward(a) Convert normal blood pressure readings of 120 over 80 mm Hg to newtons per meter squared using be relationship for pressure due to the weight of a fluid (p=hg) rater a conversion factor. (b) Explain why be blood pressure of an infant would likely be smaller than that of an adult. Specifically, consider the smaller height to which blood mast be pumped.arrow_forward
- A garden hose with a diameter of 2.0 cm is used to fill a bucket, which has a volume of 0.10 cubic meters. It takes 1.2 minutes to fill. An adjustable nozzle is attached to the hose to decrease the diameter of the opening, which increases the speed of the water. The hose is held level to the ground at a height of 1.0 meters and the diameter is decreased until a flower bed 3.0 meters away is reached. (a) What is the volume flow rate of the through the nozzle when the diameter 2.0 cm? (b) What does is the speed of coming out of the hose? (c) What does the speed of the water coming out of the hose need to be to reach the flower bed 3.0 meters away? (d) What is be diameter of nozzle needed to reach be flower bed?arrow_forwardFigure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forwardA man of mass m = 70.0 kg and having a density of = 1 050 kg/m3 (while holding his breath) is completely submerged in water, (a) Write Newtons second law for this situation in terms of the mans mass m, the density of water , his volume V, and g. Neglect any viscous drag of the water, (b) Substitute m = V into Newtons second law and solve for the acceleration a, canceling common factors, (c) Calculate the numeric value of the mans acceleration, (d) How long does it take the man to sink 8.00 m to the bottom of the lake?arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning