Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.55P
To determine
The speed of the medicine when it leaves the needle’s tip.
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule06:25
Chapter 14 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 14 - Suppose you are standing directly behind someone...Ch. 14 - The pressure at the bottom of a filled glass of...Ch. 14 - Several common barometers are built, with a...Ch. 14 - You are shipwrecked and floating in the middle of...Ch. 14 - You observe two helium balloons floating next to...Ch. 14 - Figure OQ14.1 shows aerial views from directly...Ch. 14 - Prob. 14.2OQCh. 14 - A wooden block floats in water, and a steel object...Ch. 14 - An apple is held completely submerged just below...Ch. 14 - A beach ball is made of thin plastic. It has been...
Ch. 14 - A solid iron sphere and a solid lead sphere of the...Ch. 14 - Prob. 14.7OQCh. 14 - One of the predicted problems due to global...Ch. 14 - A boat develops a leak and, after its passengers...Ch. 14 - A small piece of steel is tied to a block of wood....Ch. 14 - A piece of unpainted porous wood barely floats in...Ch. 14 - A person in a boat floating in a small pond throws...Ch. 14 - Rank the buoyant forces exerted on the following...Ch. 14 - A water supply maintains a constant rate of flow...Ch. 14 - A glass of water contains floating ice cubes. When...Ch. 14 - An ideal fluid flows through a horizontal pipe...Ch. 14 - When an object is immersed in a liquid at rest,...Ch. 14 - Two thin-walled drinking glasses having equal base...Ch. 14 - Because atmospheric pressure is about 105 N/m2 and...Ch. 14 - A fish rests on the bottom of a bucket of water...Ch. 14 - You are a passenger on a spacecraft. For your...Ch. 14 - Prob. 14.6CQCh. 14 - Prob. 14.7CQCh. 14 - If you release a ball while inside a freely...Ch. 14 - (a) Is the buoyant force a conservative force? (b)...Ch. 14 - All empty metal soap dish barely floats in water....Ch. 14 - Prob. 14.11CQCh. 14 - Prob. 14.12CQCh. 14 - Prob. 14.13CQCh. 14 - Does a ship float higher in the water of an inland...Ch. 14 - Prob. 14.15CQCh. 14 - Prob. 14.16CQCh. 14 - Prairie dogs ventilate their burrows by building a...Ch. 14 - Prob. 14.18CQCh. 14 - Prob. 14.19CQCh. 14 - A large man sits on a four-legged chair with his...Ch. 14 - Prob. 14.2PCh. 14 - A 50.0-kg woman wearing high-heeled shoes is...Ch. 14 - Estimate the total mass of the Earths atmosphere....Ch. 14 - Calculate the mass of a solid gold rectangular bar...Ch. 14 - (a) A wry powerful vacuum cleaner has a hose 2.86...Ch. 14 - The spring of the pressure gauge shown in Figure...Ch. 14 - The small piston of a hydraulic lift (Fig. P14.8)...Ch. 14 - What must be the contact area between a suction...Ch. 14 - A swimming pool has dimensions 30.0 m 10.0 m and...Ch. 14 - (a) Calculate the absolute pressure at the bottom...Ch. 14 - Prob. 14.12PCh. 14 - Prob. 14.13PCh. 14 - A container is filled to a depth of 20.0 cm with...Ch. 14 - Review. The lank in Figure P14.15 is filled with...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.17PCh. 14 - Review. A solid sphere of brass (bulk modulus of...Ch. 14 - Normal atmospheric pressure is 1.013 103 Pa. The...Ch. 14 - The human brain and spinal cord are immersed in...Ch. 14 - Blaise Pascal duplicated Torricellis barometer...Ch. 14 - Prob. 14.22PCh. 14 - A backyard swimming pool with a circular base of...Ch. 14 - A tank with a flat bottom of area A and vertical...Ch. 14 - A table-tennis ball has a diameter of 3.80 cm and...Ch. 14 - Prob. 14.26PCh. 14 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 14 - A light balloon is filled with 400 m3 of helium at...Ch. 14 - A cube of wood having an edge dimension of 20.0 cm...Ch. 14 - The United States possesses the ten largest...Ch. 14 - A plastic sphere floats in water with 50.0% of its...Ch. 14 - A spherical vessel used for deep-sea exploration...Ch. 14 - A wooden block of volume 5.24 104 m3 floats in...Ch. 14 - The weight of a rectangular block of low-density...Ch. 14 - A large weather balloon whose mass is 226 kg is...Ch. 14 - A hydrometer is an instrument used to determine...Ch. 14 - Refer to Problem 16 and Figure P14.16. A...Ch. 14 - On October 21, 2001, Ian Ashpole of the United...Ch. 14 - How many cubic meters of helium are required to...Ch. 14 - Water flowing through a garden hose of diameter...Ch. 14 - A large storage tank, open at the top and filled...Ch. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - A village maintains a large tank with ail open...Ch. 14 - A legendary Dutch boy saved Holland by plugging a...Ch. 14 - Water falls over a dam of height h with a mass...Ch. 14 - Water is pumped up from the Colorado River to...Ch. 14 - In ideal flow, a liquid of density 850 kg/m3 moves...Ch. 14 - The Venturi tube discussed in Example 14.8 and...Ch. 14 - Review. Old Faithful Geyser in Yellowstone...Ch. 14 - An airplane is cruising al altitude 10 km. The...Ch. 14 - An airplane has a mass of 1.60 104 kg, and each...Ch. 14 - Prob. 14.53PCh. 14 - The Bernoulli effect can have important...Ch. 14 - Prob. 14.55PCh. 14 - Decades ago, it was thought that huge herbivorous...Ch. 14 - (a) Calculate the absolute pressure at an ocean...Ch. 14 - Prob. 14.58APCh. 14 - A spherical aluminum ball of mass 1.26 kg contains...Ch. 14 - Prob. 14.60APCh. 14 - Review. Figure P14.61 shows a valve separating a...Ch. 14 - The true weight of an object can be measured in a...Ch. 14 - Water is forced out of a fire extinguisher by air...Ch. 14 - Review. Assume a certain liquid, with density 1...Ch. 14 - Prob. 14.65APCh. 14 - Prob. 14.66APCh. 14 - Prob. 14.67APCh. 14 - A common parameter that can be used to predict...Ch. 14 - Evangelista Torricelli was the first person to...Ch. 14 - Review. With reference to the dam studied in...Ch. 14 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 14 - A beaker of mass mb containing oil of mass mu and...Ch. 14 - In 1983, the United States began coining the...Ch. 14 - Review. A long, cylindrical rod of radius r is...Ch. 14 - Prob. 14.75APCh. 14 - The spirit-in-glass thermometer, invented in...Ch. 14 - Prob. 14.77APCh. 14 - Review. In a water pistol, a piston drives water...Ch. 14 - Prob. 14.79APCh. 14 - The water supply of a building is fed through a...Ch. 14 - A U-tube open at both ends is partially filled...Ch. 14 - A woman is draining her fish tank by siphoning the...Ch. 14 - The hull of an experimental boat is to be lifted...Ch. 14 - Prob. 14.84APCh. 14 - An ice cube whose edges measure 20.0 mm is...Ch. 14 - Why is the following situation impossible? A barge...Ch. 14 - Show that the variation of atmospheric pressure...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A tank with a flat bottom of area A and vertical sides is filled to a depth h with water. The pressure is P0 at the top surface. (a) What is the absolute pressure at the bottom of the tank? (b) Suppose an object of mass M and density less than the density of water is placed into the tank and floats. No water overflows. What is the resulting increase in pressure at the bottom of the tank?arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forwardA 50.0-kg woman wearing high-heeled shoes is invited into a home in which the kitchen has vinyl floor covering. The heel on each shoe is circular and has a radius of 0.500 cm. (a) If the woman balances on one heel, what pressure does she exert on the floor? (b) Should the homeowner be concerned? Explain your answer.arrow_forward
- A hollow copper (Cu = 8.92 103 kg/m3) spherical shell of mass m = 0.950 kg floats on water with its entire volume below the surface. a. What is the radius of the sphere? b. What is the thickness of the shell wall?arrow_forward(a) Calculate the absolute pressure at an ocean depth of 1 000 m. Assume the density of seawater is 1 030 kg/m3 and the air above exerts a pressure of 101.3 kPa. (b) At this depth, what is the buoyant force on a spherical submarine having a diameter of 5.00 m?arrow_forwardA manometer containing water with one end connected to a container of gas has a column height difference of 0.60 m (Fig. P15.72). If the atmospheric pressure on the right column is 1.01 105 Pa, find the absolute pressure of the gas in the container. The density of water is 1.0 103 kg/m3. FIGURE P15.72arrow_forward
- Review. In a water pistol, a piston drives water through a large tube of area A1 into a smaller tube of area A2 as shown in Figure P14.46. The radius of the large tube is 1.00 cm and that of the small tube is 1.00 mm. The smaller tube is 3.00 cm above the larger tube. (a) If the pistol is fired horizontally at a height of 1.50 m, determine the time interval required for the water to travel from the nozzle to the ground. Neglect air resistance and assume atmospheric pressure is 1.00 atm. (b) If the desired range of the stream is 8.00 m, with what speed v2 must the stream leave the nozzle? (c) At what speed v1 must the plunger be moved to achieve the desired range? (d) What is the pressure at the nozzle? (e) Find the pressure needed in the larger tube. (f) Calculate the force that must be exerted on the trigger to achieve the desired range. (The force that must be exerted is due to pressure over and above atmospheric pressure.) Figure P14.46arrow_forward(a) What is the density of a woman who floats in freshwater with 4.00% of her volume above the surface? This could be measured by placing her in a tank with marks on the side to measure how much water she displaces when floating and when held under water (briefly). (b) What percent of her volume is above the surface when she floats in seawater?arrow_forwardFigure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forward
- Mercury is poured into a U-tube as shown in Figure P15.17a. The left arm of the tube has cross-sectional area A1 of 10.0 cm2, and the right arm has a cross-sectional area A2 of 5.00 cm2. One hundred grams of water are then poured into the right arm as shown in Figure P15.17b. (a) Determine the length of the water column in the right arm of the U-tube. (b) Given that the density of mercury is 13.6 g/cm3, what distance h does the mercury rise in the left arm?arrow_forward(a) What is the pressure drop due to the Bernoulli effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/S? (b) To what maximum height above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)arrow_forwardA fluid flows through a horizontal pipe that widens, making a 45 angle with the y axis (Fig. P15.48). The thin part of the pipe has radius R, and the fluids speed in the thin part of the pipe is v0. The origin of the coordinate system is at the point where the pipe begins to widen. The pipes cross section is circular. a. Find an expression for the speed v(x) of the fluid as a function of position for x 0 b. Plot your result: v(x) versus x. FIGURE P15.48 (a) The continuity equation (Eq. 15.21) relates the cross-sectional area to the speed of the fluid traveling through the pipe. A0v0 = A(x)v(x) v(x)=A0v0A(x) The cross sectional area is the area of a circle whose radius is y(x). The widening pan of the pipe is a straight line with slope of 1 and intercept y(0) = R. y(x) = mx + b = x + R A(x) = [y(x)]2 = (x + R)2 Plug this into the formula for the velocity. Plug this into the formula for the velocity. v(x)=A0v0(x+R)2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning