Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 14.13P
To determine
The force the water causes on the foundation wall.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 14 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 14 - Suppose you are standing directly behind someone...Ch. 14 - The pressure at the bottom of a filled glass of...Ch. 14 - Several common barometers are built, with a...Ch. 14 - You are shipwrecked and floating in the middle of...Ch. 14 - You observe two helium balloons floating next to...Ch. 14 - Figure OQ14.1 shows aerial views from directly...Ch. 14 - Prob. 14.2OQCh. 14 - A wooden block floats in water, and a steel object...Ch. 14 - An apple is held completely submerged just below...Ch. 14 - A beach ball is made of thin plastic. It has been...
Ch. 14 - A solid iron sphere and a solid lead sphere of the...Ch. 14 - Prob. 14.7OQCh. 14 - One of the predicted problems due to global...Ch. 14 - A boat develops a leak and, after its passengers...Ch. 14 - A small piece of steel is tied to a block of wood....Ch. 14 - A piece of unpainted porous wood barely floats in...Ch. 14 - A person in a boat floating in a small pond throws...Ch. 14 - Rank the buoyant forces exerted on the following...Ch. 14 - A water supply maintains a constant rate of flow...Ch. 14 - A glass of water contains floating ice cubes. When...Ch. 14 - An ideal fluid flows through a horizontal pipe...Ch. 14 - When an object is immersed in a liquid at rest,...Ch. 14 - Two thin-walled drinking glasses having equal base...Ch. 14 - Because atmospheric pressure is about 105 N/m2 and...Ch. 14 - A fish rests on the bottom of a bucket of water...Ch. 14 - You are a passenger on a spacecraft. For your...Ch. 14 - Prob. 14.6CQCh. 14 - Prob. 14.7CQCh. 14 - If you release a ball while inside a freely...Ch. 14 - (a) Is the buoyant force a conservative force? (b)...Ch. 14 - All empty metal soap dish barely floats in water....Ch. 14 - Prob. 14.11CQCh. 14 - Prob. 14.12CQCh. 14 - Prob. 14.13CQCh. 14 - Does a ship float higher in the water of an inland...Ch. 14 - Prob. 14.15CQCh. 14 - Prob. 14.16CQCh. 14 - Prairie dogs ventilate their burrows by building a...Ch. 14 - Prob. 14.18CQCh. 14 - Prob. 14.19CQCh. 14 - A large man sits on a four-legged chair with his...Ch. 14 - Prob. 14.2PCh. 14 - A 50.0-kg woman wearing high-heeled shoes is...Ch. 14 - Estimate the total mass of the Earths atmosphere....Ch. 14 - Calculate the mass of a solid gold rectangular bar...Ch. 14 - (a) A wry powerful vacuum cleaner has a hose 2.86...Ch. 14 - The spring of the pressure gauge shown in Figure...Ch. 14 - The small piston of a hydraulic lift (Fig. P14.8)...Ch. 14 - What must be the contact area between a suction...Ch. 14 - A swimming pool has dimensions 30.0 m 10.0 m and...Ch. 14 - (a) Calculate the absolute pressure at the bottom...Ch. 14 - Prob. 14.12PCh. 14 - Prob. 14.13PCh. 14 - A container is filled to a depth of 20.0 cm with...Ch. 14 - Review. The lank in Figure P14.15 is filled with...Ch. 14 - Prob. 14.16PCh. 14 - Prob. 14.17PCh. 14 - Review. A solid sphere of brass (bulk modulus of...Ch. 14 - Normal atmospheric pressure is 1.013 103 Pa. The...Ch. 14 - The human brain and spinal cord are immersed in...Ch. 14 - Blaise Pascal duplicated Torricellis barometer...Ch. 14 - Prob. 14.22PCh. 14 - A backyard swimming pool with a circular base of...Ch. 14 - A tank with a flat bottom of area A and vertical...Ch. 14 - A table-tennis ball has a diameter of 3.80 cm and...Ch. 14 - Prob. 14.26PCh. 14 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 14 - A light balloon is filled with 400 m3 of helium at...Ch. 14 - A cube of wood having an edge dimension of 20.0 cm...Ch. 14 - The United States possesses the ten largest...Ch. 14 - A plastic sphere floats in water with 50.0% of its...Ch. 14 - A spherical vessel used for deep-sea exploration...Ch. 14 - A wooden block of volume 5.24 104 m3 floats in...Ch. 14 - The weight of a rectangular block of low-density...Ch. 14 - A large weather balloon whose mass is 226 kg is...Ch. 14 - A hydrometer is an instrument used to determine...Ch. 14 - Refer to Problem 16 and Figure P14.16. A...Ch. 14 - On October 21, 2001, Ian Ashpole of the United...Ch. 14 - How many cubic meters of helium are required to...Ch. 14 - Water flowing through a garden hose of diameter...Ch. 14 - A large storage tank, open at the top and filled...Ch. 14 - Prob. 14.42PCh. 14 - Prob. 14.43PCh. 14 - A village maintains a large tank with ail open...Ch. 14 - A legendary Dutch boy saved Holland by plugging a...Ch. 14 - Water falls over a dam of height h with a mass...Ch. 14 - Water is pumped up from the Colorado River to...Ch. 14 - In ideal flow, a liquid of density 850 kg/m3 moves...Ch. 14 - The Venturi tube discussed in Example 14.8 and...Ch. 14 - Review. Old Faithful Geyser in Yellowstone...Ch. 14 - An airplane is cruising al altitude 10 km. The...Ch. 14 - An airplane has a mass of 1.60 104 kg, and each...Ch. 14 - Prob. 14.53PCh. 14 - The Bernoulli effect can have important...Ch. 14 - Prob. 14.55PCh. 14 - Decades ago, it was thought that huge herbivorous...Ch. 14 - (a) Calculate the absolute pressure at an ocean...Ch. 14 - Prob. 14.58APCh. 14 - A spherical aluminum ball of mass 1.26 kg contains...Ch. 14 - Prob. 14.60APCh. 14 - Review. Figure P14.61 shows a valve separating a...Ch. 14 - The true weight of an object can be measured in a...Ch. 14 - Water is forced out of a fire extinguisher by air...Ch. 14 - Review. Assume a certain liquid, with density 1...Ch. 14 - Prob. 14.65APCh. 14 - Prob. 14.66APCh. 14 - Prob. 14.67APCh. 14 - A common parameter that can be used to predict...Ch. 14 - Evangelista Torricelli was the first person to...Ch. 14 - Review. With reference to the dam studied in...Ch. 14 - A 1.00-kg beaker containing 2.00 kg of oil...Ch. 14 - A beaker of mass mb containing oil of mass mu and...Ch. 14 - In 1983, the United States began coining the...Ch. 14 - Review. A long, cylindrical rod of radius r is...Ch. 14 - Prob. 14.75APCh. 14 - The spirit-in-glass thermometer, invented in...Ch. 14 - Prob. 14.77APCh. 14 - Review. In a water pistol, a piston drives water...Ch. 14 - Prob. 14.79APCh. 14 - The water supply of a building is fed through a...Ch. 14 - A U-tube open at both ends is partially filled...Ch. 14 - A woman is draining her fish tank by siphoning the...Ch. 14 - The hull of an experimental boat is to be lifted...Ch. 14 - Prob. 14.84APCh. 14 - An ice cube whose edges measure 20.0 mm is...Ch. 14 - Why is the following situation impossible? A barge...Ch. 14 - Show that the variation of atmospheric pressure...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Mercury is poured into a U-tube as shown in Figure P15.17a. The left arm of the tube has cross-sectional area A1 of 10.0 cm2, and the right arm has a cross-sectional area A2 of 5.00 cm2. One hundred grams of water are then poured into the right arm as shown in Figure P15.17b. (a) Determine the length of the water column in the right arm of the U-tube. (b) Given that the density of mercury is 13.6 g/cm3, what distance h does the mercury rise in the left arm?arrow_forwardA horizontal pipe 10.0 cm in diameter has a smooth reduction to a pipe 5.00 cm in diameter. If the pressure of the water in the larger pipe is 8.00 104 Pa and the pressure in the smaller pipe is 6.00 104 Pa, at what rate does water flow through the pipes?arrow_forwardReview. The tank in Figure P15.13 is filled with water of depth d = 2.00 m. At the bottom of one sidewall is a rectangular hatch of height h = 1.00 m and width w = 2.00 m that is hinged at the top of the hatch. (a) Determine the magnitude of the force the water exerts on the hatch. (b) Find the magnitude of the torque exerted by the water about the hinges.arrow_forward
- A large storage tank with an open top is filled to a height h0. The tank is punctured at a height h above the bottom of the tank (Fig. P15.39). Find an expression for how far from the tank the exiting stream lands. Figure P15.39arrow_forwardWater enters a smooth, horizontal tube with a speed of 2.0 m/s and emerges out of the tube with a speed of 8.0 m/s. Each end of the tube has a different cross-sectional radius. Find the ratio of the entrance radius to the exit radius.arrow_forwardWater flows through a fire hose of diameter 6.35 cm at a rate of 0.0120 m3/s. The fire hose ends in a nozzle of inner diameter 2.20 cm. What is the speed with which the water exits the nozzle?arrow_forward
- The small piston of a hydraulic lift (Fig. P15.6) has a cross-sectional area of 3.00 cm2, and its large piston has a cross-sectional area of 200 cm2. What downward force of magnitude F1 must be applied to the small piston for the lift to raise a load whose weight is Fg = 15.0 kN? Figure P15.6arrow_forwardA village maintains a large tank with ail open top, containing water for emergencies. The water can drain from the tank through a hose of diameter 6.60 cm. The hose ends with a nozzle of diameter 2.20 cm. A rubber stopper is inserted into the nozzle. The water level in the lank is kept 7.50 m above the nozzle. (a) Calculate the friction force exerted on the stopper by the nozzle. (b) The stopper is removed. What mass of water flows from the nozzle in 2.00 h? (c) Calculate the gauge pressure of the flowing water in the hose just behind the nozzle.arrow_forwardA garden hose with a diameter of 2.0 cm is used to fill a bucket, which has a volume of 0.10 cubic meters. It takes 1.2 minutes to fill. An adjustable nozzle is attached to the hose to decrease the diameter of the opening, which increases the speed of the water. The hose is held level to the ground at a height of 1.0 meters and the diameter is decreased until a flower bed 3.0 meters away is reached. (a) What is the volume flow rate of the through the nozzle when the diameter 2.0 cm? (b) What does is the speed of coming out of the hose? (c) What does the speed of the water coming out of the hose need to be to reach the flower bed 3.0 meters away? (d) What is be diameter of nozzle needed to reach be flower bed?arrow_forward
- Figure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forwardA table-tennis ball has a diameter of 3.80 cm and average density of 0.084 0 g/cm3. What force is required to hold it completely submerged under water?arrow_forwardThe gravitational force exerted on a solid object is 5.00 N. When the object is suspended from a spring scale and submerged in water, the scale reads 3.50 N (Fig. P15.24). Find the density of the object. Figure P15.24 Problems 24 and 25.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College