PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
Question
Book Icon
Chapter 14, Problem 14.32E
Interpretation Introduction

(a)

Interpretation:

The most populated rotational level for a sample of LiH at 298K is to be determined.

Concept introduction:

An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.

Expert Solution
Check Mark

Answer to Problem 14.32E

The most populated rotational level for a sample of LiH at 298K is 4.

Explanation of Solution

The most populated rotational level is calculated by the formula as shown below.

Jmax=(kT2B)12…(1)

Where,

k is the Boltzmann’s constant.

T is the temperature.

B is the rotational constant.

The rotational constant is calculated by the formula as shown below.

B=h28π2μr2…(2)

Where,

r is the bond length of LiH.

μ is the reduced mass.

h is the Planck’s constant (6.626×1034Js).

The reduced mass is calculated by the formula as shown below.

μ=mLimHmLi+mH…(3)

Where,

mLi is the mass of lithium.

mH is the mass of hydrogen.

Substitute the value of mass of lithium and hydrogen in equation (3).

μ=6.941amu×1amu6.941amu+1amu=0.874amu

Convert 0.874amu to kg.

0.874amu=0.8746.022×1026kg=1.45×1027kg

Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).

B=(6.626×1034Js)28(3.14)2×1.45×1027kg×(1.60×1010)2=43.9×1068292.8×1047=1.5×1022J

Substitute the value of rotational constant, Boltzmann’s constant and Jmax equation (1).

Jmax=(1.38×1023JK1×298K2×1.5×1022J)12=411.24×1023J3×1022J=13.708=3.70

Therefore, the most populated rotational level for a sample of LiH at 298K is 4.

Conclusion

the most populated rotational level for a sample of LiH at 298K is 4.

Interpretation Introduction

(b)

Interpretation:

The most populated rotational level for a sample of LiH at 1000K is to be determined.

Concept introduction:

An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.

Expert Solution
Check Mark

Answer to Problem 14.32E

The most populated rotational level for a sample of LiH at 1000K is 7.

Explanation of Solution

The most populated rotational level is calculated by the formula as shown below.

Jmax=(kT2B)12…(1)

Where,

k is the Boltzmann’s constant.

T is the temperature.

B is the rotational constant.

The rotational constant is calculated by the formula as shown below.

B=h28π2μr2…(2)

Where,

r is the bond length of LiH.

μ is the reduced mass.

h is the Planck’s constant (6.626×1034Js).

The reduced mass is calculated by the formula as shown below.

μ=mLimHmLi+mH…(3)

Where,

mLi is the mass of lithium.

mH is the mass of hydrogen.

Substitute the value of mass of lithium and hydrogen in equation (3).

μ=6.941amu×1amu6.941amu+1amu=0.874amu

Convert 0.874amu to kg.

0.874amu=0.8746.022×1026kg=1.45×1027kg

Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).

B=(6.626×1034Js)28(3.14)2×1.45×1027kg×(1.60×1010)2=43.9×1068292.8×1047=1.5×1022J

Substitute the value of rotational constant, Boltzmann’s constant and Jmax equation (1).

Jmax=(1.38×1023JK1×1000K2×1.5×1022J)12=1.38×1020J3×1022J=46=6.78

Therefore, the most populated rotational level for a sample of LiH at 1000K is 7.

Conclusion

The most populated rotational level for a sample of LiH at 1000K is 7.

Interpretation Introduction

(c)

Interpretation:

The most populated rotational level for a sample of LiH at 5000K is to be determined.

Concept introduction:

An electronic state of energy has its own vibrational states. The energy between the electronic states is large followed by vibrational states and then rotational states. During an electronic transition, electron from ground state moves straight to the excited state keeping the internuclear distance constant. This is known as the Franck-Condon principle.

Expert Solution
Check Mark

Answer to Problem 14.32E

The most populated rotational level for a sample of LiH at 5000K is 15.

Explanation of Solution

The most populated rotational level is calculated by the formula as shown below.

Jmax=(kT2B)12…(1)

Where,

k is the Boltzmann’s constant.

T is the temperature.

B is the rotational constant.

The rotational constant is calculated by the formula as shown below.

B=h28π2μr2…(2)

Where,

r is the bond length of LiH.

μ is the reduced mass.

h is the Planck’s constant (6.626×1034Js).

The reduced mass is calculated by the formula as shown below.

μ=mLimHmLi+mH…(3)

Where,

mLi is the mass of lithium.

mH is the mass of hydrogen.

Substitute the value of mass of lithium and hydrogen in equation (3).

μ=6.941amu×1amu6.941amu+1amu=0.874amu

Convert 0.874amu to kg.

0.874amu=0.8746.022×1026kg=1.45×1027kg

Substitute the value of reduced mass, bond length, Planck’s constant in equation (2).

B=(6.626×1034Js)28(3.14)2×1.45×1027kg×(1.60×1010)2=43.9×1068292.8×1047=1.5×1022J

Substitute the value of rotational constant, Boltzmann’s constant and Jmax equation (1).

Jmax=(1.38×1023JK1×5000K2×1.5×1022J)12=6.9×1020J3×1022J=230=15.16

Therefore, the most populated rotational level for a sample of LiH at 5000K is 15.

Conclusion

The most populated rotational level for a sample of LiH at 5000K is 15.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculating the pH at equivalence of a titration Try Again Your answer is incorrect. 0/5 a A chemist titrates 70.0 mL of a 0.7089 M hydrocyanic acid (HCN) solution with 0.4574M KOH solution at 25 °C. Calculate the pH at equivalence. The pK of hydrocyanic acid is 9.21. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of KOH solution added. pH = 11.43] G 00. 18 Ar B•
Biological Macromolecules Naming and drawing the products of aldose oxidation and reduction aw a Fischer projection of the molecule that would produce L-ribonic acid if it were subjected to mildly oxidizing reaction conditions. Click and drag to start drawing a structure. X AP ‡ 1/5 Naor Explanation Check McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Accessibil
● Biological Macromolecules Identifying the parts of a disaccharide Take a look at this molecule, and then answer the questions in the table below it. CH2OH O H H H OH OH OH H H CH2OH H O OH H OH H H H H OH Is this a reducing sugar? Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. Explanation Check O yes X O no ○ yes O no U

Chapter 14 Solutions

PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.

Ch. 14 - Prob. 14.11ECh. 14 - Prob. 14.12ECh. 14 - Prob. 14.13ECh. 14 - Prob. 14.14ECh. 14 - Diatomic sulfur, S2, was detected in the tail of...Ch. 14 - Prob. 14.16ECh. 14 - Prob. 14.17ECh. 14 - Prob. 14.18ECh. 14 - Prob. 14.19ECh. 14 - Prob. 14.20ECh. 14 - Prob. 14.21ECh. 14 - Prob. 14.22ECh. 14 - Which of the following molecules should have pure...Ch. 14 - Which of the following molecules should have pure...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - Derive equation 14.21 from the E expression...Ch. 14 - Prob. 14.28ECh. 14 - Prob. 14.29ECh. 14 - Lithium hydride, 7Li1H, is a potential fuel for...Ch. 14 - Prob. 14.31ECh. 14 - Prob. 14.32ECh. 14 - Prob. 14.33ECh. 14 - Prob. 14.34ECh. 14 - Prob. 14.35ECh. 14 - Prob. 14.36ECh. 14 - From the data in Table 14.2, predict B for DCl D...Ch. 14 - A colleague states that the pure rotational...Ch. 14 - Prob. 14.39ECh. 14 - Prob. 14.40ECh. 14 - Prob. 14.41ECh. 14 - Prob. 14.42ECh. 14 - Prob. 14.43ECh. 14 - Determine E for J=20J=21 for HBr assuming it acts...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Prob. 14.47ECh. 14 - Prob. 14.48ECh. 14 - Prob. 14.49ECh. 14 - Prob. 14.50ECh. 14 - Prob. 14.51ECh. 14 - Prob. 14.52ECh. 14 - Prob. 14.53ECh. 14 - Prob. 14.54ECh. 14 - Prob. 14.55ECh. 14 - Prob. 14.56ECh. 14 - Prob. 14.57ECh. 14 - Prob. 14.58ECh. 14 - Prob. 14.59ECh. 14 - Prob. 14.60ECh. 14 - Prob. 14.61ECh. 14 - Prob. 14.62ECh. 14 - Prob. 14.63ECh. 14 - Prob. 14.64ECh. 14 - Prob. 14.65ECh. 14 - Prob. 14.66ECh. 14 - Prob. 14.68ECh. 14 - Prob. 14.69ECh. 14 - Prob. 14.70ECh. 14 - Prob. 14.71ECh. 14 - Prob. 14.72ECh. 14 - Prob. 14.73ECh. 14 - Prob. 14.74ECh. 14 - Prob. 14.75ECh. 14 - Prob. 14.76ECh. 14 - Prob. 14.77ECh. 14 - Prob. 14.78ECh. 14 - Prob. 14.79ECh. 14 - Prob. 14.80ECh. 14 - Prob. 14.81ECh. 14 - Prob. 14.82ECh. 14 - Prob. 14.83ECh. 14 - Prob. 14.84ECh. 14 - Prob. 14.85ECh. 14 - Dioctyl sulfide, (C8H17)2S, and hexadecane,...Ch. 14 - Where would you expect vibrations for ethyl...Ch. 14 - Prob. 14.88ECh. 14 - Prob. 14.89ECh. 14 - Prob. 14.90ECh. 14 - Prob. 14.91ECh. 14 - Prob. 14.92ECh. 14 - Prob. 14.93ECh. 14 - Prob. 14.94ECh. 14 - The mutual exclusion rule states that for certain...Ch. 14 - Prob. 14.96ECh. 14 - Prob. 14.97ECh. 14 - Prob. 14.98ECh. 14 - Prob. 14.99ECh. 14 - Construct and compare the energy level diagrams...Ch. 14 - Prob. 14.101E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,