PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
2nd Edition
ISBN: 9781285074788
Author: Ball
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 14.43E
Interpretation Introduction
Interpretation:
The value of centrifugal distortion constant is to be calculated, and it is to be compared with the tabulated values.
Concept introduction:
In a rigid rotor, as the values of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Estimate the values of γ = Cp,m/CV,m for gaseous ammonia and methane. Do this calculation with and without the vibrational contribution to the energy. Which is closer to the experimental value at 25 °C? Hint: Note that Cp,m − CV,m = R for a perfect gas.
Calculate the relative number of molecules in the J = 1 and J = 2 rotational states of HCI at 27 \deg C. (I = 2.643 x 1047 kg m^2).
The cohesive energy density, U, is defined as U/V, where U is the mean potential energy of attraction within the sample and V its volume. Show that U = 1/2N2∫V(R)dτ where N is the number density of the molecules and V(R) is their attractive potential energy and where the integration ranges from d to infinity and over all angles. Go on to show that the cohesive energy density of a uniform distribution of molecules that interact by a van der Waals attraction of the form −C6/R6 is equal to −(2π/3)(NA2/d3M2)ρ2C6, where ρ is the mass density of the solid sample and M is the molar mass of the molecules.
Chapter 14 Solutions
PHYSICAL CHEMISTRY-STUDENT SOLN.MAN.
Ch. 14 - Prob. 14.1ECh. 14 - Determine if the following integrals can be...Ch. 14 - What is the frequency of light having the...Ch. 14 - What is the wavelength of light having the given...Ch. 14 - What is the energy of light having each...Ch. 14 - The Cu(H2O)62+ complex has octahedral symmetry. Is...Ch. 14 - What are the wavelength, speed, and energy of a...Ch. 14 - Prob. 14.8ECh. 14 - Prob. 14.9ECh. 14 - Prob. 14.10E
Ch. 14 - Prob. 14.11ECh. 14 - Prob. 14.12ECh. 14 - Prob. 14.13ECh. 14 - Prob. 14.14ECh. 14 - Diatomic sulfur, S2, was detected in the tail of...Ch. 14 - Prob. 14.16ECh. 14 - Prob. 14.17ECh. 14 - Prob. 14.18ECh. 14 - Prob. 14.19ECh. 14 - Prob. 14.20ECh. 14 - Prob. 14.21ECh. 14 - Prob. 14.22ECh. 14 - Which of the following molecules should have pure...Ch. 14 - Which of the following molecules should have pure...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - Derive equation 14.21 from the E expression...Ch. 14 - Prob. 14.28ECh. 14 - Prob. 14.29ECh. 14 - Lithium hydride, 7Li1H, is a potential fuel for...Ch. 14 - Prob. 14.31ECh. 14 - Prob. 14.32ECh. 14 - Prob. 14.33ECh. 14 - Prob. 14.34ECh. 14 - Prob. 14.35ECh. 14 - Prob. 14.36ECh. 14 - From the data in Table 14.2, predict B for DCl D...Ch. 14 - A colleague states that the pure rotational...Ch. 14 - Prob. 14.39ECh. 14 - Prob. 14.40ECh. 14 - Prob. 14.41ECh. 14 - Prob. 14.42ECh. 14 - Prob. 14.43ECh. 14 - Determine E for J=20J=21 for HBr assuming it acts...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Prob. 14.47ECh. 14 - Prob. 14.48ECh. 14 - Prob. 14.49ECh. 14 - Prob. 14.50ECh. 14 - Prob. 14.51ECh. 14 - Prob. 14.52ECh. 14 - Prob. 14.53ECh. 14 - Prob. 14.54ECh. 14 - Prob. 14.55ECh. 14 - Prob. 14.56ECh. 14 - Prob. 14.57ECh. 14 - Prob. 14.58ECh. 14 - Prob. 14.59ECh. 14 - Prob. 14.60ECh. 14 - Prob. 14.61ECh. 14 - Prob. 14.62ECh. 14 - Prob. 14.63ECh. 14 - Prob. 14.64ECh. 14 - Prob. 14.65ECh. 14 - Prob. 14.66ECh. 14 - Prob. 14.68ECh. 14 - Prob. 14.69ECh. 14 - Prob. 14.70ECh. 14 - Prob. 14.71ECh. 14 - Prob. 14.72ECh. 14 - Prob. 14.73ECh. 14 - Prob. 14.74ECh. 14 - Prob. 14.75ECh. 14 - Prob. 14.76ECh. 14 - Prob. 14.77ECh. 14 - Prob. 14.78ECh. 14 - Prob. 14.79ECh. 14 - Prob. 14.80ECh. 14 - Prob. 14.81ECh. 14 - Prob. 14.82ECh. 14 - Prob. 14.83ECh. 14 - Prob. 14.84ECh. 14 - Prob. 14.85ECh. 14 - Dioctyl sulfide, (C8H17)2S, and hexadecane,...Ch. 14 - Where would you expect vibrations for ethyl...Ch. 14 - Prob. 14.88ECh. 14 - Prob. 14.89ECh. 14 - Prob. 14.90ECh. 14 - Prob. 14.91ECh. 14 - Prob. 14.92ECh. 14 - Prob. 14.93ECh. 14 - Prob. 14.94ECh. 14 - The mutual exclusion rule states that for certain...Ch. 14 - Prob. 14.96ECh. 14 - Prob. 14.97ECh. 14 - Prob. 14.98ECh. 14 - Prob. 14.99ECh. 14 - Construct and compare the energy level diagrams...Ch. 14 - Prob. 14.101E
Knowledge Booster
Similar questions
- Given these two equations, calculate Cv for CO2 and N2 using the velocity of sound. 6. According to statistical mechanics, the contribution to Cy due to the ith vibrational mode of a molecule is c ee;/T Cv,vib,4 = R(7) ³ (e®,/T — 1)² › where Oi = hcv./kB, h is Planck's constant, and c is the speed of light in cm s-¹. v; is the vibrational frequency of the ith vibrational mode in wavenumbers (cm-¹). The quantity O, has dimensions of temperature and is sometimes referred to as the vibrational tem- perature (of the ith vibrational mode). The total vibrational contribution to the molar heat capacity for an N-atom (linear) molecule is then Cy,vib Cv,vib,i Calculate Cy for CO₂ at 300 K, assuming that the translational and rotational con- tributions are (3/2)R and R, respectively, and use the preceding equations to obtain the vibrational contribution. Four vibrational modes for CO₂ are expected (3N- 5). How- ever, three fundamental frequencies are observed at v= 667.3, 1340, and 2349.3 cm-¹.…arrow_forwardCalculate the rotational energy of CO at J=2 given a bond length of 1.0 Å. unit in eV.arrow_forwardWe can use the classical harmonic oscillator to think about molecular bonds. The HCI molecule has a force constant k = 481 N/m. For the mass, use the reduced mass, which is defined as µ = (m₁m₂)/(m₁+m₂). a) Plot the potential energy of HCl from -1 to 1 Å. What happens to the curvature of the potential as the force constant is varied? What does this mean physically? b) Plot position as a function of time for a total energy of 6 x 10-20 J. What is the period of the motion? How does the period change as the force constant is varied? Explain why this makes sense physically.arrow_forward
- Use eqn 14D.4 to deduce expressions for (a) the root-mean-square separation of the ends of the chain, (b) the mean separation of the ends, and (c) their most probable separation. Evaluate these three quantities for a fully flexible chain with N = 4000 and l = 154 pm.arrow_forwardStarting from the formula for the rotational energy levels: ħ² EJ J(J+1) = J = 0, 1, 2... 21 Show that: ħ² AE = 1/² (J+1) Δε J = 0,1,2...arrow_forwardDerive an expression for the mean energy of a collection of molecules that have three energy levels at 0, ε, and 3ε with degeneracies 1, 5, and 3, respectively.arrow_forward
- 16.2 Consider 1.00 x 1022 4He atoms in a box of dimensions 1.0 cm x 1.0 cm x 1.0 cm. Calculate the occupancy of the first excited level at 1.0 mK, 2.0 K, and 4.0 K. Do the same for ³He. What conclusions might you draw from the results of your calculations?arrow_forwardWe obtain the Raman spectrum of Cl2(l) vibration by excitation with radiation from a Hg lamp with a wavelength of 4358.25 Å. In this way we obtain a Stokes line at 4466.5 Å which is very intense. Calculate the wave number of the fundamental vibration of the chlorine molecule and the bond strength constant (we will assume that it is a harmonic vibration).Data: h = 6.626x10-34J s; c = 2.998x108 m s-1, NA = 6.022x1023 mol-1; relative atomic mass of Cl = 35.45.arrow_forwardThe vibrational temperature of a molecule prepared in a supersonic jet can be estimated from the observed popula- tions of its vibrational levels, assuming a Boltzmann distri- bution. The vibrational frequency of HgBr is 5.58 × 1012 s-1, and the ratio of the number of molecules in the n = 1 state to the number in the n = 0 state is 0.127. Estimate the vibra- tional temperature under these conditions.arrow_forward
- Calculate the relative populations of the J = 2 and J = 1 rotational levels of HCI at 25 oC. For HCI the rotational constant is B =318.0 GHz.arrow_forwardCalculate the relative populations of a spherical rotor at 298 K in the levels with J = 0 and J = 5, given that ᷉ B = 2.71 cm−1.arrow_forwardThe density of lead is 1.13 ✕ 104 kg/m3 at 20.0°C. Find its density (in kg/m3) at 100°C. (Use ? = 29 ✕ 10−6 (°C)−1 for the coefficient of linear expansion. Give your answer to at least four significant figures.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you