BIO Weighing a Virus. In February 2004, scientists at Purdue University used a highly sensitive technique to measure the mass of a vaccinia virus (the kind used in smallpox vaccine). The procedure involved measuring the frequency of oscillation of a tiny sliver of silicon (just 30 nm long) with a laser, first without the virus and then after the virus had attached itself to the silicon. The difference in mass caused a change in the frequency. We can model such a process as a mass on a spring. (a) Show that the ratio of the frequency with the virus attached ( f S+V ) to the frequency without the virus ( f S ) is given by f S+V / f S = 1 / 1 + ( m V / m S ) , where m V is the mass of the virus and m S is the mass of the silicon sliver. Notice that it is not necessary to know or measure the force constant of the spring. (b) In some data, the silicon sliver has a mass of 2.10 × 10 −16 g and a frequency of 2.00 × 10 15 Hz without the virus and 2.87 × 10 14 Hz with the virus. What is the mass of the virus, in grams and in femtograms?
BIO Weighing a Virus. In February 2004, scientists at Purdue University used a highly sensitive technique to measure the mass of a vaccinia virus (the kind used in smallpox vaccine). The procedure involved measuring the frequency of oscillation of a tiny sliver of silicon (just 30 nm long) with a laser, first without the virus and then after the virus had attached itself to the silicon. The difference in mass caused a change in the frequency. We can model such a process as a mass on a spring. (a) Show that the ratio of the frequency with the virus attached ( f S+V ) to the frequency without the virus ( f S ) is given by f S+V / f S = 1 / 1 + ( m V / m S ) , where m V is the mass of the virus and m S is the mass of the silicon sliver. Notice that it is not necessary to know or measure the force constant of the spring. (b) In some data, the silicon sliver has a mass of 2.10 × 10 −16 g and a frequency of 2.00 × 10 15 Hz without the virus and 2.87 × 10 14 Hz with the virus. What is the mass of the virus, in grams and in femtograms?
BIO Weighing a Virus. In February 2004, scientists at Purdue University used a highly sensitive technique to measure the mass of a vaccinia virus (the kind used in smallpox vaccine). The procedure involved measuring the frequency of oscillation of a tiny sliver of silicon (just 30 nm long) with a laser, first without the virus and then after the virus had attached itself to the silicon.
The difference in mass caused a change in the frequency. We can model such a process as a mass on a spring. (a) Show that the ratio of the frequency with the virus attached (fS+V) to the frequency without the virus (fS) is given by
f
S+V
/
f
S
=
1
/
1
+
(
m
V
/
m
S
)
, where mV is the mass of the virus and mS is the mass of the silicon sliver. Notice that it is not necessary to know or measure the force constant of the spring. (b) In some data, the silicon sliver has a mass of 2.10 × 10−16g and a frequency of 2.00 × 1015 Hz without the virus and 2.87 × 1014 Hz with the virus. What is the mass of the virus, in grams and in femtograms?
A block of mass m₁
=
10.0 kg is connected to a block of mass m₂
34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
Vm1
×
1.32
Vm2
= 1.32
×
m/s
m/s
A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
m/s
Vm1
Vm2
m/s
mi
m2
k
i
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to
support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m.
Truck body
Dyo
Axle
(a) What is the compression of the leaf spring for a load of 4.90 × 105 N?
m
(b) How much work is done compressing the springs?
]
Chapter 14 Solutions
University Physics with Modern Physics, Books a la Carte Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.