EBK PHYSICAL CHEMISTRY
EBK PHYSICAL CHEMISTRY
2nd Edition
ISBN: 8220100477560
Author: Ball
Publisher: Cengage Learning US
Question
Book Icon
Chapter 14, Problem 14.13E
Interpretation Introduction

(a)

Interpretation:

Whether the molecule dimethylacetylene, CH3CCCH3 is linear, spherical tops, prolate symmetric tops, oblate symmetric tops, or asymmetric tops is to be stated.

Concept introduction:

Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule, the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.

Interpretation Introduction

(b)

Interpretation:

Whether the molecule sulfur hexafluoride, SF6 is linear, spherical tops, prolate symmetric tops, oblate symmetric tops, or asymmetric tops is to be stated.

Concept introduction:

Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.

Interpretation Introduction

(c)

Interpretation:

Whether the molecule phosphate ion, PO43 is linear, spherical tops, prolate symmetric tops, oblate symmetric tops, or asymmetric tops is to be stated.

Concept introduction:

Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.

Interpretation Introduction

(d)

Interpretation:

Whether the molecule glycine, (CH2)(NH2)(COOH) is linear, spherical tops, prolate symmetric tops, oblate symmetric tops, or asymmetric tops is to be stated.

Concept introduction:

Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.

Interpretation Introduction

(e)

Interpretation:

Whether the molecule cis1,2 Dichloroethylene is linear, spherical tops, prolate symmetric tops, oblate symmetric tops, or asymmetric tops is to be stated.

Concept introduction:

Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.

Interpretation Introduction

(f)

Interpretation:

Whether the molecule trans1,2 Dichloroethylene is linear, spherical tops, prolate symmetric tops, oblate symmetric tops, or asymmetric tops is to be stated.

Concept introduction:

Nonlinear molecules can rotate in three independent and mutually perpendicular directions. It is not necessary that the rotation in one dimension is equivalent to rotations in the other two directions. The moment of inertia for each dimension of each rotation is usually different. If a molecule has three different moments of inertia, it is called an asymmetric top molecule. If a molecule has two of its three moments of inertia equal, it is called symmetric top molecule. If the two equal moments of inertia are lower than the unique moment of inertia, then the molecule is called oblate tops. If the two equal moments of inertia are higher than the unique moment of inertia, then the molecule is called prolate tops. For linear molecule the moment of inertia along the molecular axis is zero. Spherical top molecules have no net dipole moment or net dipole moment is equal to zero.

Blurred answer
Students have asked these similar questions
On the next page is an LC separation of the parabens found in baby wash. Parabens are suspected in a link to breast cancer therefore an accurate way to quantitate them is desired. a. In the chromatogram, estimate k' for ethyl paraben. Clearly indicate what values you used for all the terms in your calculation. b. Is this a "good" value for a capacity factor? Explain. c. What is the resolution between n-Propyl paraben and n-Butyl paraben? Again, indicate clearly what values you used in your calculation. MAU | Methyl paraben 40 20 0 -2 Ethyl paraben n-Propyl paraben n-Butyl paraben App ID 22925 6 8 min
d. In Figure 4, each stationary phase shows some negative correlation between plate count and retention factor. In other words, as k' increases, N decreases. Explain this relationship between k' and N. Plate Count (N) 4000 3500 2500 2000 1500 1000 Figure 4. Column efficiency (N) vs retention factor (k') for 22 nonionizable solutes on FMS (red), PGC (black), and COZ (green). 3000 Eluent compositions (acetonitrile/water, A/W) were adjusted to obtain k' less than 15, which was achieved for most solutes as follows: FMS (30/70 A/W), PGC (60/40), COZ (80/20). Slightly different compositions were used for the most highly retained solutes. All columns were 50 mm × 4.6 mm id and packed with 5 um particles, except for COZ, which was packed with 3 um particles. All other chromatographic conditions were constant: column length 5 cm, column j.§. 4.6 mm, flow rate 2 mL/min, column temperature 40 °C, and injection volume 0.5 μL Log(k'x/K'ethylbenzene) FMS 1.5 1.0 0.5 0.0 ཐྭ ཋ ཤྩ བྷྲ ; 500 0 5 10…
f. Predict how the van Deemter curve in Figure 7 would change if the temperature were raised from 40 °C to 55 °C. Figure 7. van Desmter curves in reduced coordinates for four nitroalkane homologues (nitropropane, black; nitrobutane, red; nitropentane, blue; and nitrohexane, green) separated on the FMS phase. Chromatographic conditions: column dimensions 50 mm × 4.6 mm id, eluent 30/70 ACN/water, flow rates 0.2-5.0 mL/min, injection volume 0.5 and column temperature 40 °C. No corrections to the plate heights have been made to account for extracolumn dispersion. Reduced Plate Height (h) ° 20 40 60 Reduced Velocity (v) 8. (2) A water sample is analyzed for traces of benzene using headspace analysis. The sample and standard are spiked with a fixed amount of toluene as an internal standard. The following data are obtained: Ppb benzene Peak area benzene Peak area toluene 10.0 252 376 Sample 533 368 What is the concentration of benzene in the sample?

Chapter 14 Solutions

EBK PHYSICAL CHEMISTRY

Ch. 14 - Prob. 14.11ECh. 14 - Prob. 14.12ECh. 14 - Prob. 14.13ECh. 14 - Prob. 14.14ECh. 14 - Diatomic sulfur, S2, was detected in the tail of...Ch. 14 - Prob. 14.16ECh. 14 - Prob. 14.17ECh. 14 - Prob. 14.18ECh. 14 - Prob. 14.19ECh. 14 - Prob. 14.20ECh. 14 - Prob. 14.21ECh. 14 - Prob. 14.22ECh. 14 - Which of the following molecules should have pure...Ch. 14 - Which of the following molecules should have pure...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - Derive equation 14.21 from the E expression...Ch. 14 - Prob. 14.28ECh. 14 - Prob. 14.29ECh. 14 - Lithium hydride, 7Li1H, is a potential fuel for...Ch. 14 - Prob. 14.31ECh. 14 - Prob. 14.32ECh. 14 - Prob. 14.33ECh. 14 - Prob. 14.34ECh. 14 - Prob. 14.35ECh. 14 - Prob. 14.36ECh. 14 - From the data in Table 14.2, predict B for DCl D...Ch. 14 - A colleague states that the pure rotational...Ch. 14 - Prob. 14.39ECh. 14 - Prob. 14.40ECh. 14 - Prob. 14.41ECh. 14 - Prob. 14.42ECh. 14 - Prob. 14.43ECh. 14 - Determine E for J=20J=21 for HBr assuming it acts...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Prob. 14.47ECh. 14 - Prob. 14.48ECh. 14 - Prob. 14.49ECh. 14 - Prob. 14.50ECh. 14 - Prob. 14.51ECh. 14 - Prob. 14.52ECh. 14 - Prob. 14.53ECh. 14 - Prob. 14.54ECh. 14 - Prob. 14.55ECh. 14 - Prob. 14.56ECh. 14 - Prob. 14.57ECh. 14 - Prob. 14.58ECh. 14 - Prob. 14.59ECh. 14 - Prob. 14.60ECh. 14 - Prob. 14.61ECh. 14 - Prob. 14.62ECh. 14 - Prob. 14.63ECh. 14 - Prob. 14.64ECh. 14 - Prob. 14.65ECh. 14 - Prob. 14.66ECh. 14 - Prob. 14.68ECh. 14 - Prob. 14.69ECh. 14 - Prob. 14.70ECh. 14 - Prob. 14.71ECh. 14 - Prob. 14.72ECh. 14 - Prob. 14.73ECh. 14 - Prob. 14.74ECh. 14 - Prob. 14.75ECh. 14 - Prob. 14.76ECh. 14 - Prob. 14.77ECh. 14 - Prob. 14.78ECh. 14 - Prob. 14.79ECh. 14 - Prob. 14.80ECh. 14 - Prob. 14.81ECh. 14 - Prob. 14.82ECh. 14 - Prob. 14.83ECh. 14 - Prob. 14.84ECh. 14 - Prob. 14.85ECh. 14 - Dioctyl sulfide, (C8H17)2S, and hexadecane,...Ch. 14 - Where would you expect vibrations for ethyl...Ch. 14 - Prob. 14.88ECh. 14 - Prob. 14.89ECh. 14 - Prob. 14.90ECh. 14 - Prob. 14.91ECh. 14 - Prob. 14.92ECh. 14 - Prob. 14.93ECh. 14 - Prob. 14.94ECh. 14 - The mutual exclusion rule states that for certain...Ch. 14 - Prob. 14.96ECh. 14 - Prob. 14.97ECh. 14 - Prob. 14.98ECh. 14 - Prob. 14.99ECh. 14 - Construct and compare the energy level diagrams...Ch. 14 - Prob. 14.101E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning