EBK PHYSICAL CHEMISTRY
EBK PHYSICAL CHEMISTRY
2nd Edition
ISBN: 8220100477560
Author: Ball
Publisher: Cengage Learning US
Question
Book Icon
Chapter 14, Problem 14.79E
Interpretation Introduction

(a)

Interpretation:

The number of IR-active vibrations for CH4 is to be determined.

Concept introduction:

The complex vibrations exhibit by the polyatomic molecule is known as normal modes of vibrations. The vibrational modes of a molecule are IR or Raman active. If a molecule has centre of symmetry, then the modes which are IR-active will be Raman inactive and the modes that are IR-inactive will be Raman active. The total number of vibrational degrees of freedom for nonlinear molecule is represented by 3N6.

Interpretation Introduction

(b)

Interpretation:

The number of IR-active vibrations for CH3Cl is to be determined.

Concept introduction:

The complex vibrations exhibit by the polyatomic molecule is known as normal modes of vibrations. The vibrational modes of a molecule are IR or Raman active. If a molecule has centre of symmetry, then the modes which are IR-active will be Raman inactive and the modes that are IR-inactive will be Raman active. The total number of vibrational degrees of freedom for nonlinear molecule is represented by 3N6.

Interpretation Introduction

(c)

Interpretation:

The number of IR-active vibrations for CH2Cl2 is to be determined.

Concept introduction:

The complex vibrations exhibit by the polyatomic molecule is known as normal modes of vibrations. The vibrational modes of a molecule are IR or Raman active. If a molecule has centre of symmetry, then the modes which are IR-active will be Raman inactive and the modes that are IR-inactive will be Raman active. The total number of vibrational degrees of freedom for nonlinear molecule is represented by 3N6.

Interpretation Introduction

(d)

Interpretation:

The number of IR-active vibrations for CHCl3 is to be determined.

Concept introduction:

The complex vibrations exhibit by the polyatomic molecule is known as normal modes of vibrations. The vibrational modes of a molecule are IR or Raman active. If a molecule has centre of symmetry, then the modes which are IR-active will be Raman inactive and the modes that are IR-inactive will be Raman active. The total number of vibrational degrees of freedom for nonlinear molecule is represented by 3N6.

Interpretation Introduction

(e)

Interpretation:

The number of IR-active vibrations for CCl4 is to be determined. Whether the answers make sense in the progression from methane to fully substituted methane is to be stated.

Concept introduction:

The complex vibrations exhibit by the polyatomic molecule is known as normal modes of vibrations. The vibrational modes of a molecule are IR or Raman active. If a molecule has centre of symmetry, then the modes which are IR-active will be Raman inactive and the modes that are IR-inactive will be Raman active. The total number of vibrational degrees of freedom for nonlinear molecule is represented by 3N6.

Blurred answer
Students have asked these similar questions
personality of each of them in terms of nucleophile vs. electrophile (some can be considered acids/bases but we are not looking at that here). Note you may have to use your growing intuition to figure out the personality of one of the molecules below but I believe in you! Rationalize it out based on what we have called strong versus weak electrophiles in past mechanisms. Consider using the memes below to help guide your understanding! A OH O B CH3 C Molecule A: [Select] Molecule B: [Select] Molecule C: [Select] Molecule D: [Select] > H D OH
4) Which oxygen atom in the structure below is most basic / nucleophilic? Please explain by discussing the electron density around each oxygen atom. Show at least three resonance structures for the compound. оого
Can you show me this problem. Turn them into lewis dot structures for me please and then answer the question because I cant seem to comprehend it/ The diagrams on the picture look too small I guess.

Chapter 14 Solutions

EBK PHYSICAL CHEMISTRY

Ch. 14 - Prob. 14.11ECh. 14 - Prob. 14.12ECh. 14 - Prob. 14.13ECh. 14 - Prob. 14.14ECh. 14 - Diatomic sulfur, S2, was detected in the tail of...Ch. 14 - Prob. 14.16ECh. 14 - Prob. 14.17ECh. 14 - Prob. 14.18ECh. 14 - Prob. 14.19ECh. 14 - Prob. 14.20ECh. 14 - Prob. 14.21ECh. 14 - Prob. 14.22ECh. 14 - Which of the following molecules should have pure...Ch. 14 - Which of the following molecules should have pure...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - The following are sets of rotational quantum...Ch. 14 - Derive equation 14.21 from the E expression...Ch. 14 - Prob. 14.28ECh. 14 - Prob. 14.29ECh. 14 - Lithium hydride, 7Li1H, is a potential fuel for...Ch. 14 - Prob. 14.31ECh. 14 - Prob. 14.32ECh. 14 - Prob. 14.33ECh. 14 - Prob. 14.34ECh. 14 - Prob. 14.35ECh. 14 - Prob. 14.36ECh. 14 - From the data in Table 14.2, predict B for DCl D...Ch. 14 - A colleague states that the pure rotational...Ch. 14 - Prob. 14.39ECh. 14 - Prob. 14.40ECh. 14 - Prob. 14.41ECh. 14 - Prob. 14.42ECh. 14 - Prob. 14.43ECh. 14 - Determine E for J=20J=21 for HBr assuming it acts...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Determine the number of total degrees of freedom...Ch. 14 - Prob. 14.47ECh. 14 - Prob. 14.48ECh. 14 - Prob. 14.49ECh. 14 - Prob. 14.50ECh. 14 - Prob. 14.51ECh. 14 - Prob. 14.52ECh. 14 - Prob. 14.53ECh. 14 - Prob. 14.54ECh. 14 - Prob. 14.55ECh. 14 - Prob. 14.56ECh. 14 - Prob. 14.57ECh. 14 - Prob. 14.58ECh. 14 - Prob. 14.59ECh. 14 - Prob. 14.60ECh. 14 - Prob. 14.61ECh. 14 - Prob. 14.62ECh. 14 - Prob. 14.63ECh. 14 - Prob. 14.64ECh. 14 - Prob. 14.65ECh. 14 - Prob. 14.66ECh. 14 - Prob. 14.68ECh. 14 - Prob. 14.69ECh. 14 - Prob. 14.70ECh. 14 - Prob. 14.71ECh. 14 - Prob. 14.72ECh. 14 - Prob. 14.73ECh. 14 - Prob. 14.74ECh. 14 - Prob. 14.75ECh. 14 - Prob. 14.76ECh. 14 - Prob. 14.77ECh. 14 - Prob. 14.78ECh. 14 - Prob. 14.79ECh. 14 - Prob. 14.80ECh. 14 - Prob. 14.81ECh. 14 - Prob. 14.82ECh. 14 - Prob. 14.83ECh. 14 - Prob. 14.84ECh. 14 - Prob. 14.85ECh. 14 - Dioctyl sulfide, (C8H17)2S, and hexadecane,...Ch. 14 - Where would you expect vibrations for ethyl...Ch. 14 - Prob. 14.88ECh. 14 - Prob. 14.89ECh. 14 - Prob. 14.90ECh. 14 - Prob. 14.91ECh. 14 - Prob. 14.92ECh. 14 - Prob. 14.93ECh. 14 - Prob. 14.94ECh. 14 - The mutual exclusion rule states that for certain...Ch. 14 - Prob. 14.96ECh. 14 - Prob. 14.97ECh. 14 - Prob. 14.98ECh. 14 - Prob. 14.99ECh. 14 - Construct and compare the energy level diagrams...Ch. 14 - Prob. 14.101E
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning