(a) Use the van’t Hoff equation in Problem 14.118 to derive the following expression, which relates the equilibrium constants at two different temperatures:
How does this equation support the prediction based on Le Châtelier’s principle about the shift in equilibrium with temperature? (b) The vapor pressures of water are 31.82 mmHg at 30°C and 92.51 mmHg at 50°C. Calculate the molar heat of vaporization of water.
a)
Interpretation:
The given equation is the prediction based on Le-Chatelier’s principle about the shift in equilibrium with temperature has to be interpreted.
Concept introduction:
Law of mass action: The rate of chemical reaction is directly proportional to the product of concentrations of reactant to products.
Van’t Hoff equation: the change in equilibrium constant,
Clausius-Claypeyron equation:
Explanation of Solution
Let’s write the Van’t Hoff equation at two different temperatures:
At
At
Taking the difference between two equations,
Assuming an endothermic reaction,
b)
Interpretation:
The molar heat of vaporization of water has to be calculated.
Concept introduction:
Law of mass action: The rate of chemical reaction is directly proportional to the product of concentrations of reactant to products.
Multiple equilibria: If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.
The equilibrium constant for two separate equilibrium constants are,
For overall reaction, the equilibrium constant
Therefore,
Van’t Hoff equation: the change in equilibrium constant,
Clausius-Claypeyron equation:
Explanation of Solution
For the given reaction,
The given reaction is heterogeneous equilibrium, so, the equilibrium constant expression for gas is,
Rearranging
Given:
Substituting given value into the derived Van’t Hoff equation as,
Therefore, the molar heat of vaporization of water is
Want to see more full solutions like this?
Chapter 14 Solutions
Loose Leaf for Chemistry
- 75.0 grams of an unknown metal was heated to 95.0°C, it was then placed into 150.0 grams of water at23.1°C, when the metal and water reached thermal equilibrium, the temperature was 27.8°C. Calculatethe specific heat of the metal. (Assume that the specific heat of water is 4.18 J/g °C)arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardA 25.0 g sample of water was cooled from 23.9°C to 12.7°C, how much heat was released? (Assume thatthe specific heat of water is 4.18 J/g °C)arrow_forward
- Zeolites: environmental applications.arrow_forward" is The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: :Ö: HO + Bicarbonate is crucial for the control of body pH (for example, blood pH: 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forwardWhich of these is the best use of a volumetric flask? measuring how much liquid it contains delivering a precise amount of liquid to another container holding solutions making solutions of precise concentrationarrow_forward
- You're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume densityarrow_forwardDraw a Lewis structure for each of the following species. Again, assign charges where appropriate. a. H-H¯ b. CH3-CH3 c. CH3+CH3 d. CH3 CH3 e. CH3NH3+CH3NH3 f. CH30-CH3O¯ g. CH2CH2 - h. HC2-(HCC) HC2 (HCC) i. H202×(HOOH) H₂O₂ (HOOH) Nortonarrow_forwardIs molecule 6 an enantiomer?arrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning