
(a) Use the van’t Hoff equation in Problem 14.118 to derive the following expression, which relates the equilibrium constants at two different temperatures:
How does this equation support the prediction based on Le Châtelier’s principle about the shift in equilibrium with temperature? (b) The vapor pressures of water are 31.82 mmHg at 30°C and 92.51 mmHg at 50°C. Calculate the molar heat of vaporization of water.
a)

Interpretation:
The given equation is the prediction based on Le-Chatelier’s principle about the shift in equilibrium with temperature has to be interpreted.
Concept introduction:
Law of mass action: The rate of chemical reaction is directly proportional to the product of concentrations of reactant to products.
Van’t Hoff equation: the change in equilibrium constant,
Clausius-Claypeyron equation:
Explanation of Solution
Let’s write the Van’t Hoff equation at two different temperatures:
At
At
Taking the difference between two equations,
Assuming an endothermic reaction,
b)

Interpretation:
The molar heat of vaporization of water has to be calculated.
Concept introduction:
Law of mass action: The rate of chemical reaction is directly proportional to the product of concentrations of reactant to products.
Multiple equilibria: If a reaction can be expressed as the sum of two or more reactions, the equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions.
The equilibrium constant for two separate equilibrium constants are,
For overall reaction, the equilibrium constant
Therefore,
Van’t Hoff equation: the change in equilibrium constant,
Clausius-Claypeyron equation:
Explanation of Solution
For the given reaction,
The given reaction is heterogeneous equilibrium, so, the equilibrium constant expression for gas is,
Rearranging
Given:
Substituting given value into the derived Van’t Hoff equation as,
Therefore, the molar heat of vaporization of water is
Want to see more full solutions like this?
Chapter 14 Solutions
Loose Leaf for Chemistry
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





