
About 75 percent of hydrogen for industrial use is produced by the steam-reforming process. This process is carried out in two stages called primary and secondary reforming. In the primary stage, a mixture of steam and methane at about 30 atm is heated over a nickel catalyst at 800°C to give hydrogen and carbon monoxide:
The secondary stage is carried out at about 1000°C, in the presence of air, to convert the remaining methane to hydrogen:
(a) What conditions of temperature and pressure would favor the formation of products in both the primary and secondary stage? (b) The equilibrium constant Kc for the primary stage is 18 at 800°C. (i) Calculate KP for the reaction. (ii) If the partial pressures of methane and steam were both 15 atm at the start, what are the pressures of all the gases at equilibrium?
(a)

Interpretation:
The conditions of temperature and pressure which would favour the formation of products in both the primary and secondary stage has to be calculated using the data.
Concept Introduction:
Endothermic reaction:
In an endothermic reaction, heat will be a reactant. Therefore, increasing the temperature will shift the reaction from reactant side to the product side and the value of equilibrium constant will increases.
Exothermic reaction:
In an exothermic reaction, heat will be a product. Therefore, increasing the temperature will shift the reaction from product side to the reactant side and the value of equilibrium constant will decreases.
Explanation of Solution
Given data:
The reactions at primary stage and at the secondary stage are given below:
The reaction at primary stage has a temperature of
The both reactions are endothermic
If the reactions are endothermic, heat will be the reactant and high temperatures will favour the product side.
Therefore, high temperature is maintained at steam-reforming process.
Examining the reactions, it can be seen that number of moles of products is greater than the number of moles of reactants. Therefore, the expectation is that the products will be favoured at low pressures.
The reality is that the reactions are carried out at high pressures. It is for the production of higher yields of ammonia by the hydrogen gas produced which requires a high pressure.
(b)

Interpretation:
The equilibrium constant
Concept Introduction
Equilibrium constant at constant pressure:
It is used to express the relationship between product pressures and reactant pressures.
For a general reaction,
R- Gas constant
T- Temperature
Explanation of Solution
Given data:
The reaction is given below:
Equilibrium constant
The
The pressure of all the gases at equilibrium has to be calculated.
The amount of
The ICE table for the reaction is given below
Substituting the values in the equilibrium constant equation,
Taking the square root of both sides,
The value of x can be obtained by solving the quadratic equation
The pressure at equilibrium can be calculated as follows:
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry
- ASP please....arrow_forwardNonearrow_forwardConsider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H Harrow_forward
- Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forwardWhich of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forward
- Based on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forwardDraw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





