Concept explainers
Calculate [OH-] and pH in a solution in which the hydrogen sulfite ion, HSO3-, is 0.429 M and the sulfite ion is
(a) 0.0249 M (b) 0.247 M
(c) 0.504 M (d) 0.811 M
(e) 1.223 M
(a)
Interpretation:
The molality of HSO3- ion is 0.429 M and that of
Concept Introduction :
From the hydrogen ion concentration, the concentration of hydroxide ion can be calculated as follows:
Here,
From the hydrogen ion concentration, the pH of the solution can be calculated as follows:
Answer to Problem 10QAP
Explanation of Solution
For, a buffer solution, the concentration of H+ can be calculated using the following equation:
Ka = equilibrium constant,
[HB] = concentration of weak acid.
[B-] = concentration of conjugate base.
Since,
The pH of a solution can be calculated using the formula:
pH = -log[H+]
In a buffer, the weak acid HB is the hydrogen sulfite while the conjugate base is sulfite ion.
The concentration of the sulfite ion [SO32-] is 0.0249 M. substituting the given values in equation (1)
pH of the buffer is calculated using equation (3) as follows:
[OH-] is calculated using equation (2) as follows:
So, the pH of the solution is 5.99 and [OH-] is
(b)
Interpretation:
The molality of HSO3- ion is 0.429 M and that of
Concept Introduction :
From the hydrogen ion concentration, the concentration of hydroxide ion can be calculated as follows:
Here,
From the hydrogen ion concentration, the pH of the solution can be calculated as follows:
Answer to Problem 10QAP
Explanation of Solution
The concentration of the sulfite ion [SO32-] is 0.0247 M. substituting the given values in equation (1)
pH of the buffer is calculated using equation (3) as follows:
[OH-] is calculated using equation (2) as follows:
So, the pH of the solution is 6.98 and [OH-] is
(c)
Interpretation:
The molality of HSO3- ion is 0.429 M and that of
Concept Introduction :
From the hydrogen ion concentration, the concentration of hydroxide ion can be calculated as follows:
Here,
From the hydrogen ion concentration, the pH of the solution can be calculated as follows:
Answer to Problem 10QAP
Explanation of Solution
The concentration of the sulfite ion [SO32-] is 0.504 M. substituting the given values in equation (1)
pH of the buffer is calculated using equation (3) as follows:
[OH-] is calculated using equation (2) as follows:
So, the pH of the solution is 7.29 and [OH-] is
(d)
Interpretation:
The molality of HSO3- ion is 0.429 M and that of
Concept Introduction :
From the hydrogen ion concentration, the concentration of hydroxide ion can be calculated as follows:
Here,
From the hydrogen ion concentration, the pH of the solution can be calculated as follows:
Answer to Problem 10QAP
Explanation of Solution
The concentration of the sulfite ion [SO32-] is 0.811 M. substituting the given values in equation (1)
pH of the buffer is calculated using equation (3) as follows:
[OH-] is calculated using equation (2) as follows:
So, the pH of the solution is 7.50 and [OH-] is
(e)
Interpretation:
The molality of HSO3- ion is 0.429 M and that of
Concept Introduction :
From the hydrogen ion concentration, the concentration of hydroxide ion can be calculated as follows:
Here,
From the hydrogen ion concentration, the pH of the solution can be calculated as follows:
Answer to Problem 10QAP
Explanation of Solution
The concentration of the sulfite ion [SO32-] is 1.223 M. substituting the given values in equation (1)
pH of the buffer is calculated using equation (3) as follows:
[OH-] is calculated using equation (2) as follows:
So, the pH of the solution is 7.68and [OH-] is
Want to see more full solutions like this?
Chapter 14 Solutions
OWLv2 with Student Solutions Manual eBook for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 4 terms (24 months)
- Indicate which of the following is not an element in its standard state at 25oC and 1 atm. Group of answer choices O2(g) H2(g) Ne(g) N(g) C(s, graphite)arrow_forward6. Show how you would accomplish the following transformations. (Show the steps and reagents/solvents needed) 2-methylpropene →2,2-dimethyloxiran Iarrow_forward4) Answer the following exercise with curved arrows indicating who is a nucleophile or Who is the electrophile? 2.44 Predict the structure of the product formed in the reaction of the organic base pyridine with the organic acid acetic acid, and use curved arrows to indicate the direction of electron flow. 7 H3C OH N Pyridine Acetic acidarrow_forward
- Using the data provided please help me answer this question. Determine the concentration of the iron(Ill) salicylate in the unknown directly from to graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight line.arrow_forwardPlease help me figure out what the slope is and how to calculate the half life Using the data provided.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Follow the curved arrows and draw the structure of the missing reactants, intermediates, or products in the following mechanism. Include all lone pairs. Ignore stereochemistry. Ignore inorganic byproducts. H Br2 (1 equiv) H- Select to Draw Starting Alkene Draw Major Product I I H2O 四: ⑦.. Q Draw Major Charged Intermediate Iarrow_forward
- NH (aq)+CNO (aq) → CO(NH2)2(s) Experiment [NH4] (M) [CNO] (M) Initial rate (M/s) 1 0.014 0.02 0.002 23 0.028 0.02 0.008 0.014 0.01 0.001 Calculate the rate contant for this reaction using the data provided in the table.arrow_forward2CIO2 + 20H-1 CIO31 + CIO2 + H2O Experiment [CIO2], M [OH-1], M 1 0.0500 0.100 23 2 0.100 0.100 3 0.100 0.0500 Initial Rate, M/s 0.0575 0.230 0.115 ... Given this date, calculate the overall order of this reaction.arrow_forward2 3 .(be)_[Ɔ+(be)_OI ← (b²)_IƆO+ (be)_I Experiment [1-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 0.000069 4 0.0025 0.0025 0.000140 Calculate the rate constant of this reaction using the table data.arrow_forward
- 1 2 3 4 I(aq) +OCl(aq) → IO¯¯(aq) + Cl¯(aq) Experiment [I-] M 0.005 [OCI-] 0.005 Initial Rate M/min 0.000275 0.0025 0.005 0.000138 0.0025 0.0025 Calculate the overall order of this reaction using the table data. 0.0025 0.000069 0.0025 0.000140arrow_forwardH2O2(aq) +3 I¯(aq) +2 H+(aq) → 13(aq) +2 H₂O(l)· ••• Experiment [H2 O2]o (M) [I]o (M) [H+]。 (M) Initial rate (M/s) 1 0.15 0.15 0.05 0.00012 234 0.15 0.3 0.05 0.00024 0.3 0.15 0.05 0.00024 0.15 0.15 0.1 0.00048 Calculate the overall order of this reaction using the table data.arrow_forwardThe U. S. Environmental Protection Agency (EPA) sets limits on healthful levels of air pollutants. The maximum level that the EPA considers safe for lead air pollution is 1.5 μg/m³ Part A If your lungs were filled with air containing this level of lead, how many lead atoms would be in your lungs? (Assume a total lung volume of 5.40 L.) ΜΕ ΑΣΦ = 2.35 1013 ? atoms ! Check your rounding. Your final answer should be rounded to 2 significant figures in the last step. No credit lost. Try again.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning