Little-known fact The shortest day of the year occurs on the winter solstice (near December 21) and the longest day of the year occurs on the summer solstice (near June 21). However, the latest sunrise and the earliest sunset do not occur on the winter solstice, and the earliest sunrise and the latest sunset do not occur on the summer solstice. At latitude 40° north, the latest sunrise occurs on January 4 at 7:25 A.M. (14 days after the solstice), and the earliest sunset occurs on December 7 at 4:37 P.M. (14 days before the solstice). Similarly, the earliest sunrise occurs on July 2 at 4:30 A.M. (14 days after the solstice) and the latest sunset occurs on June 7 at 7:32 P.M. (14 days before the solstice). Using sine functions, devise a function s ( t ) that gives the time of sunrise t days after January 1 and a function S ( t ) that gives the time of sunset t days after January 1. Assume that s and S are measured in minutes and s = 0 and S = 0 correspond to 4:00 A.M. Graph the functions. Then graph the length of the day function D ( t ) = S ( t ) − s ( t ) and show that the longest and shortest days occur on the solstices.
Little-known fact The shortest day of the year occurs on the winter solstice (near December 21) and the longest day of the year occurs on the summer solstice (near June 21). However, the latest sunrise and the earliest sunset do not occur on the winter solstice, and the earliest sunrise and the latest sunset do not occur on the summer solstice. At latitude 40° north, the latest sunrise occurs on January 4 at 7:25 A.M. (14 days after the solstice), and the earliest sunset occurs on December 7 at 4:37 P.M. (14 days before the solstice). Similarly, the earliest sunrise occurs on July 2 at 4:30 A.M. (14 days after the solstice) and the latest sunset occurs on June 7 at 7:32 P.M. (14 days before the solstice). Using sine functions, devise a function s ( t ) that gives the time of sunrise t days after January 1 and a function S ( t ) that gives the time of sunset t days after January 1. Assume that s and S are measured in minutes and s = 0 and S = 0 correspond to 4:00 A.M. Graph the functions. Then graph the length of the day function D ( t ) = S ( t ) − s ( t ) and show that the longest and shortest days occur on the solstices.
Solution Summary: The author explains how to find the functions S(t) and s left (t-). The length of the day function has its maximum at summer solstice and minimum at winter
Little-known fact The shortest day of the year occurs on the winter solstice (near December 21) and the longest day of the year occurs on the summer solstice (near June 21). However, the latest sunrise and the earliest sunset do not occur on the winter solstice, and the earliest sunrise and the latest sunset do not occur on the summer solstice. At latitude 40° north, the latest sunrise occurs on January 4 at 7:25 A.M. (14 days after the solstice), and the earliest sunset occurs on December 7 at 4:37 P.M. (14 days before the solstice). Similarly, the earliest sunrise occurs on July 2 at 4:30 A.M. (14 days after the solstice) and the latest sunset occurs on June 7 at 7:32 P.M. (14 days before the solstice). Using sine functions, devise a function s(t) that gives the time of sunrise t days after January 1 and a function S(t) that gives the time of sunset t days after January 1. Assume that s and S are measured in minutes and s = 0 and S = 0 correspond to 4:00 A.M. Graph the functions. Then graph the length of the day function D(t) = S(t) − s(t) and show that the longest and shortest days occur on the solstices.
1. Show that the vector field
F(x, y, z)
=
(2x sin ye³)ix² cos yj + (3xe³ +5)k
satisfies the necessary conditions for a conservative vector field, and find a potential function for
F.
1. Newton's Law of Gravitation (an example of an inverse square law) states that the magnitude
of the gravitational force between two objects with masses m and M is
|F|
mMG
|r|2
where r is the distance between the objects, and G is the gravitational constant. Assume that the
object with mass M is located at the origin in R³. Then, the gravitational force field acting on
the object at the point r = (x, y, z) is given by
F(x, y, z) =
mMG
r3
r.
mMG
mMG
Show that the scalar vector field f(x, y, z) =
=
is a potential function for
r
√√x² + y² .
Fi.e. show that F = Vf.
Remark: f is the negative of the physical potential energy, because F = -V(-ƒ).
2. Suppose f(x) = 3x² - 5x. Show all your work for the problems below.
Chapter 1 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License