Rising radiosonde The National Weather Service releases approximately 70,000 radiosondes every year to collect data from the atmosphere. Attached to a balloon, a radiosonde rises at about 1000 ft/mm until the balloon bursts in the upper atmosphere Suppose a radiosonde is released from a point 6 ft above the ground and that 5 seconds later, it is 83 ft above the ground Let f ( t ) represent the height (in feet) that the radiosonde is above the ground t seconds after it is released. Evaluate f ( 5 ) − f ( 0 ) 5 − 0 and interpret the meaning of this quotient.
Rising radiosonde The National Weather Service releases approximately 70,000 radiosondes every year to collect data from the atmosphere. Attached to a balloon, a radiosonde rises at about 1000 ft/mm until the balloon bursts in the upper atmosphere Suppose a radiosonde is released from a point 6 ft above the ground and that 5 seconds later, it is 83 ft above the ground Let f ( t ) represent the height (in feet) that the radiosonde is above the ground t seconds after it is released. Evaluate f ( 5 ) − f ( 0 ) 5 − 0 and interpret the meaning of this quotient.
Solution Summary: The author evaluates the difference quotient f(5)-f
Rising radiosonde The National Weather Service releases approximately 70,000 radiosondes every year to collect data from the atmosphere. Attached to a balloon, a radiosonde rises at about 1000 ft/mm until the balloon bursts in the upper atmosphere Suppose a radiosonde is released from a point 6 ft above the ground and that 5 seconds later, it is 83 ft above the ground Let f(t) represent the height (in feet) that the radiosonde is above the ground t seconds after it is released. Evaluate
f
(
5
)
−
f
(
0
)
5
−
0
and interpret the meaning of this quotient.
Exercise 11.3 A slope field is given for the equation y' = 4y+4.
(a) Sketch the particular solution that corresponds to y(0) = −2
(b) Find the constant solution
(c) For what initial conditions y(0) is the solution increasing?
(d) For what initial conditions y(0) is the solution decreasing?
(e) Verify these results using only the differential equation y' = 4y+4.
Aphids are discovered in a pear orchard. The Department of Agriculture has determined that the population of aphids t hours after the orchard has been sprayed is approximated by N(t)=1800−3tln(0.17t)+t where 0<t≤1000.
Step 1 of 2:
Find N(63). Round to the nearest whole number.
3. [-/3 Points] DETAILS
MY NOTES
SCALCET8 7.4.032.
ASK YOUR TEACHER
PRACTICE ANOTHER
Evaluate the integral.
X
+ 4x + 13
Need Help?
Read It
SUBMIT ANSWER
dx
Chapter 1 Solutions
Calculus, Single Variable: Early Transcendentals (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY