If f is a continuous function of one variable with two relative maxima on an interval, then there must be a relative minimum between the relative maxima. (Convince yourself of this by drawing some pictures.) The purpose of this exercise is to show that this result does not extend to functions of two variables. Show that f x , y = 4 x 2 e y − 2 x 4 − e 4 y has two relative maxima but no other critical points (see Figure Ex-30).
If f is a continuous function of one variable with two relative maxima on an interval, then there must be a relative minimum between the relative maxima. (Convince yourself of this by drawing some pictures.) The purpose of this exercise is to show that this result does not extend to functions of two variables. Show that f x , y = 4 x 2 e y − 2 x 4 − e 4 y has two relative maxima but no other critical points (see Figure Ex-30).
If f is a continuous function of one variable with two relative maxima on an interval, then there must be a relative minimum between the relative maxima. (Convince yourself of this by drawing some pictures.) The purpose of this exercise is to show that this result does not extend to functions of two variables. Show that
f
x
,
y
=
4
x
2
e
y
−
2
x
4
−
e
4
y
has two relative maxima but no other critical points (see Figure Ex-30).
Formula Formula A function f(x) attains a local maximum at x=a , if there exists a neighborhood (a−δ,a+δ) of a such that, f(x)<f(a), ∀ x∈(a−δ,a+δ),x≠a f(x)−f(a)<0, ∀ x∈(a−δ,a+δ),x≠a In such case, f(a) attains a local maximum value f(x) at x=a .
1. A bicyclist is riding their bike along the Chicago Lakefront Trail. The velocity (in
feet per second) of the bicyclist is recorded below. Use (a) Simpson's Rule, and (b)
the Trapezoidal Rule to estimate the total distance the bicyclist traveled during the
8-second period.
t
0 2
4 6 8
V
10 15
12 10 16
2. Find the midpoint rule approximation for
(a) n = 4
+5
x²dx using n subintervals.
1° 2
(b) n = 8
36
32
28
36
32
28
24
24
20
20
16
16
12
8-
4
1
2
3
4
5
6
12
8
4
1
2
3
4
5
6
=
5 37
A 4 8 0.5
06
9
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
Chapter 13 Solutions
Calculus Early Transcendentals, Binder Ready Version
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.