ORGANIC CHEMISTRY-NEXTGEN+BOX (1 SEM.)
ORGANIC CHEMISTRY-NEXTGEN+BOX (1 SEM.)
4th Edition
ISBN: 9781119760986
Author: Klein
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13.8, Problem 13.60P
Interpretation Introduction

Interpretation:

The reagent has to be identified that is used to achieve the given transformation.

Concept Introduction:

Elimination Reaction:

To eliminate a hydroxyl group, acidic condition is needed for E1 reaction.  The hydroxyl group is protonated and converted into a better leaving group.  The formed intermediate carbocation loses a proton and an alkene is formed as product.  E1 reaction mechanism works well with tertiary alcohol because the tertiary carbocation is more stable.  Secondary alcohols also undergo E1 elimination reaction.

For primary alcohol, the E1 elimination is not possible as it cannot form the carbocation.  Hence, E2 mechanism is used.  In this case also the hydroxyl group is a bad leaving group.  This has to be converted to a good leaving group by reacting it with tosyl chloride to give tosylate which is a good leaving group.  Final step is the treatment with tert-butoxide as this is used to favor elimination rather than substitution.  In this case the less substituted alkene is obtained as tert-butoxide is sterically hindered.

Sodium ethoxide can also be used in the final step.  If sodium ethoxide is used, then the elimination will give the more substituted alkene because ethoxide is not bulky.

Blurred answer
Students have asked these similar questions
need help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please  What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
The name of the following molecule is: Ν

Chapter 13 Solutions

ORGANIC CHEMISTRY-NEXTGEN+BOX (1 SEM.)

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Lipids - Fatty Acids, Triglycerides, Phospholipids, Terpenes, Waxes, Eicosanoids; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=7dmoH5dAvpY;License: Standard YouTube License, CC-BY