Concept explainers
Meaning of the Jacobian The Jacobian is a magnification (or reduction) factor that relates the area of a small region near the point (u, v) to the area of the image of that region near the point (x,y).
a. Suppose S is a rectangle in the uv-plane with vertices O(0,0), P(Δu, 0), {Δu, Δv), and Q(0, Δv) (see figure). The image of S under the transformation x = g(u, v), y = h(u, v) is a region R in the xy-plane. Let O’ P’ and Q’ be the images of O, P, and Q, respectively, in the xy-plane, where O’ P’ and Q’ do not all lie on the same line. Explain why the coordinates of O’, P’, and Q’ are (g(0, 0), h(0, 0)), (g(Δu, 0), h(Δu, 0)), and (g(0, Δv), h(0, Δv)), respectively.
b. Use a Taylor series in both variables to show that
where gu (0,0) is
c. Consider the
d. Explain why the ratio of the area of R to the area of S is approximately |J(u, v)|.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
Calculus: Early Transcendentals (2nd Edition)
Additional Math Textbook Solutions
College Algebra (7th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
College Algebra with Modeling & Visualization (5th Edition)
Pre-Algebra Student Edition
Algebra and Trigonometry (6th Edition)
Calculus: Early Transcendentals (2nd Edition)
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,