Concept explainers
Let f be a function defined on some interval (a, ∞). Then
means that the values of f(x) can be made arbitrarily close to ______ by taking _______ sufficiently large. In this case the line y = L is called a _______ _______ of the function y = f(x). For example,
To fill: The blanks in the statement “Let f be a function defined on some interval
Answer to Problem 1E
Let f be a function defined on some interval
Explanation of Solution
Definition used:
Horizontal asymptote:
The line
Let f be the function defined on the interval
The definition of limit
From the definition stated above, the line
Now, consider
In
So, the value of
Thus, from the definition stated above, the line
Chapter 13 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning