Precalculus: Mathematics for Calculus - 6th Edition
Precalculus: Mathematics for Calculus - 6th Edition
6th Edition
ISBN: 9780840068071
Author: Stewart, James, Redlin, Lothar, Watson, Saleem
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 2T

For the piecewise-defined function f whose graph is shown, find:

  1. (a) lim x 1 f ( x )
  2. (b) lim x 1 + f ( x )
  3. (c) lim x 1 f ( x )
  4. (d) lim x 0 f ( x )
  5. (e) lim x 0 + f ( x )
  6. (f) lim x 0 f ( x )
  7. (g) lim x 2 f ( x )
  8. (h) lim x 2 + f ( x )
  9. (i) lim x 2 f ( x )

f ( x ) = { 1 if x < 1 0 if x = 1 x 2 if 1 < x 2 4 x if 2 < x

Chapter 13, Problem 2T, For the piecewise-defined function f whose graph is shown, find: (a) limx1f(x) (b) limx1+f(x) (c)

(a)

Expert Solution
Check Mark
To determine

To find: The value of limx1f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx1f(x) is 1.

Explanation of Solution

Given:

The graph of function f is given below,

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 13, Problem 2T

Figure (1)

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

From the Figure (1), the value of f(x) approaches 1 as x approaches 1 .

For the limit limx1f(x) , the value of f(x) is 1 when x goes to 1 .

limx1f(x)=1

Thus, the value of limx1f(x) is 1.

(b)

Expert Solution
Check Mark
To determine

To find: The value of limx1+f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx1+f(x) is 1.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

From the Figure (1), the value of f(x) approaches 1 as x approaches 1 .

For the limit limx1+f(x) , the value of f(x) is 1 when x goes to 1 .

limx1+f(x)=1

Thus the value of limx1+f(x) is 1.

(c)

Expert Solution
Check Mark
To determine

To find: The value of limx1f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx1f(x) is 1.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

If limxaf(x)=L and limxa+f(x)=L , then limxaf(x) is equal to the L.

From part (a), value of limx1f(x) is 1 and from part (b) the value of limx1+f(x) is 1

limx1f(x)=1

Thus, the value of limx1f(x) is equal to 1.

(d)

Expert Solution
Check Mark
To determine

To find: The value of limx0f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx0f(x) is 0.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

From the Figure (1), the value of f(x) approaches 0 as x approaches 0.

For the limit limx0f(x) , the value of f(x) is 0 when x goes to 0.

limx0f(x)=0

Thus the value of limx0f(x) is 0.

(e)

Expert Solution
Check Mark
To determine

To find: The value of limx0+f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx0+f(x) is 0.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

From the Figure (1), the value of f(x) approaches 0 as x approaches 0.

For the limit limx0+f(x) , the value of f(x) is 0 when x goes to 0.

limx0+f(x)=0

Thus the value of limx0+f(x) is 0.

(f)

Expert Solution
Check Mark
To determine

To find: The value of limx0f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx0f(x) is 0.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

If limxaf(x)=L and limxa+f(x)=L , then limxaf(x) is equal to the L.

From part (d), the value of limx0f(x) is 0 and from part (e) the value of limx0+f(x) is 0.

limx0f(x)=0

Thus, the value of limx0f(x) is equal to 0.

(g)

Expert Solution
Check Mark
To determine

To find: The value of limx2f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx2f(x) is 4.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

From the Figure (1), the value of f(x) approaches 4 as x approaches 2.

For the limit limx2f(x) , the value of f(x) is 4 when x goes to 2.

limx2f(x)=4

Thus the value of limx2f(x) is 4.

(h)

Expert Solution
Check Mark
To determine

To find: The value of limx2+f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx2+f(x) is 2.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

From the Figure (1), the value of f(x) approaches 2 as x approaches 2.

For the limit limx2+f(x) , the value of f(x) is 2 when x goes to 2.

limx2+f(x)=2

Thus, the value of limx2+f(x) is 2.

(i)

Expert Solution
Check Mark
To determine

To find: The value of limx2f(x) and the graph of f is given and the value of function f(x) is f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Answer to Problem 2T

The value of limx2f(x) does not exist.

Explanation of Solution

Given:

The graph of function f is given in Figure (1).

The value of function f(x) is,

f(x)={1          if x<10          if x=1x2        if 1<x24x    if 2< x     

Calculation:

If limxaf(x)=L and limxa+f(x)=L , then limxaf(x) is equal to the L.

From part (g), the value limx2f(x) of is 4 and from part (h) the value of limx2+f(x) is 2.

limx2f(x)limx2+f(x)

Thus, the value of limx2f(x) is does not exist.

Chapter 13 Solutions

Precalculus: Mathematics for Calculus - 6th Edition

Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.2 - Suppose the following limits exist:...Ch. 13.2 - If f is a polynomial or a rational function and a...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Prob. 29ECh. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 38ECh. 13.2 - Prob. 39ECh. 13.3 - The derivative of a function f at a number a is...Ch. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13.3 - Prob. 24ECh. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - Prob. 27ECh. 13.3 - Prob. 28ECh. 13.3 - Prob. 29ECh. 13.3 - Inflating a Balloon A spherical balloon is being...Ch. 13.3 - Temperature Change A roast turkey is taken from an...Ch. 13.3 - Heart Rate A cardiac monitor is used to measure...Ch. 13.3 - Prob. 33ECh. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.4 - Let f be a function defined on some interval (a,...Ch. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Prob. 13ECh. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - Prob. 17ECh. 13.4 - Prob. 18ECh. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Prob. 21ECh. 13.4 - Prob. 22ECh. 13.4 - Prob. 23ECh. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Prob. 31ECh. 13.4 - Prob. 32ECh. 13.4 - Prob. 33ECh. 13.4 - Prob. 34ECh. 13.4 - Salt Concentration (a) A tank contains 5000 L of...Ch. 13.4 - Prob. 36ECh. 13.4 - Prob. 37ECh. 13.5 - The graph of a function f is shown below. 1. To...Ch. 13.5 - Prob. 2ECh. 13.5 - Prob. 3ECh. 13.5 - Prob. 4ECh. 13.5 - Prob. 5ECh. 13.5 - Prob. 6ECh. 13.5 - Prob. 7ECh. 13.5 - Prob. 8ECh. 13.5 - Prob. 9ECh. 13.5 - Prob. 10ECh. 13.5 - Prob. 11ECh. 13.5 - Prob. 12ECh. 13.5 - Prob. 13ECh. 13.5 - Prob. 14ECh. 13.5 - Prob. 15ECh. 13.5 - Prob. 16ECh. 13.5 - Prob. 17ECh. 13.5 - Prob. 18ECh. 13.5 - Prob. 19ECh. 13.5 - Prob. 20ECh. 13.5 - Prob. 21ECh. 13.5 - Prob. 22ECh. 13 - Prob. 1RCCCh. 13 - Prob. 2RCCCh. 13 - Prob. 3RCCCh. 13 - Prob. 4RCCCh. 13 - Prob. 5RCCCh. 13 - Prob. 6RCCCh. 13 - Prob. 7RCCCh. 13 - Prob. 8RCCCh. 13 - Prob. 9RCCCh. 13 - Prob. 10RCCCh. 13 - Prob. 11RCCCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Prob. 38RECh. 13 - Prob. 39RECh. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - Prob. 42RECh. 13 - Prob. 43RECh. 13 - Prob. 44RECh. 13 - Prob. 45RECh. 13 - Prob. 46RECh. 13 - Prob. 47RECh. 13 - Prob. 48RECh. 13 - Prob. 1TCh. 13 - For the piecewise-defined function f whose graph...Ch. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - Prob. 5TCh. 13 - Prob. 6TCh. 13 - Prob. 7TCh. 13 - Work Done by a Winch A motorized winch is being...Ch. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 1CRTCh. 13 - Prob. 2CRTCh. 13 - Prob. 3CRTCh. 13 - Prob. 4CRTCh. 13 - Prob. 5CRTCh. 13 - Prob. 6CRTCh. 13 - Prob. 7CRTCh. 13 - Prob. 8CRTCh. 13 - Prob. 9CRTCh. 13 - Prob. 10CRT
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY