Precalculus: Mathematics for Calculus - 6th Edition
Precalculus: Mathematics for Calculus - 6th Edition
6th Edition
ISBN: 9780840068071
Author: Stewart, James, Redlin, Lothar, Watson, Saleem
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 7T

(a)

To determine

The approximate area of the region with five rectangles, lies under the graph of f(x)=4x2 .

(a)

Expert Solution
Check Mark

Answer to Problem 7T

The area of each rectangle is 3.56.

Explanation of Solution

Given:

The region lies under the graph of f(x)=4x2 and above the interval 0x1 is given below,

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 13, Problem 7T , additional homework tip  1

Figure (1)

Calculation:

Sketch five rectangles under the curve f(x)=4x2 and area of this region is the addition of the areas of each rectangle.

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 13, Problem 7T , additional homework tip  2

Figure (2)

From the Figure (1), x1 is 0.2, x2 is 0.4, x3 is 0.6, x4 is 0.8, x5 is 1.0.

The formula to find width,

Δx=ban

Substitute 0 for a, 1 for b and 5 for n in the above formula.

Δx=102=12=0.2

From Figure (2), the area of region is sum of five rectangles

R5=[f(x1)Δx+f(x2)Δx+f(x3)Δx+f(x4)Δx+f(x5)Δx]=Δx[f(x1)+f(x2)+f(x3)+f(x4)+f(x5)]

Substitute 0.2 for x1 , 0.4 for x2 , 0.6 for x3 , 0.8 for x4 and 1.0 for x5 to find the total area,

Rn=Δx[f(x1)+f(x2)+f(x3)+f(x4)+f(x5)]=(0.2)[(4(0.2)2)+(4(0.4)2)+(4(0.6)2)+(4(0.8)2)+(4(0.2)2)+(4(1)2)]=(0.2)[3.96+3.84+3.64+3.36+3]=3.56

The area of the region is 3.56.

(b)

To determine

To find: The exact value of the area of the region by using the limit definition of area.

(b)

Expert Solution
Check Mark

Answer to Problem 7T

The exact value of the area of the region is 113 .

Explanation of Solution

Given:

The region lies under the graph of f(x)=4x2 and above the interval 0x1 is given below,

Precalculus: Mathematics for Calculus - 6th Edition, Chapter 13, Problem 7T , additional homework tip  3

Figure (1)

Formula used:

The area A of the region that lies under the graph of f is the limit of the sum the areas of approximating rectangles:

A=limn[f(x1)Δx+f(x2)Δx++f(xn)Δx]=limnk=1nf(xk)Δx

Where,

Δx=ban

xk=a+kΔx

b and a are the intervals of the region

n is number of rectangles.

Calculation:

The formula to find the width,

Δx=ban

Substitute 1 for b and 0 for a in the above formula.

Δx=10n=1n

The formula to calculate right end point is,

xk=a+kΔx

Substitute 1n for Δx and 0 for a in the above formula.

xk=0+k(1n)=kn

Substitute kn for xk to find the value of f(kn) ,

f(kn)=4(kn)2=4n2k2n2

Substitute 4n2k2n2 for f(xk) , 1n for Δx in formula of area A ,

A=limnk=1n4n2k2n21n=limnk=1n4n2k2n3=limnk=1n4nk2n3=limn4nk=1n1limn1n3k=1nk2n3

Solve above limits,

A=4limn1n3k=1nk2=4limn1n3n(n+1)(2n+1)6=limn2+3n+1n26=113

Thus the exact value of the area of the region is 113

Chapter 13 Solutions

Precalculus: Mathematics for Calculus - 6th Edition

Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.2 - Suppose the following limits exist:...Ch. 13.2 - If f is a polynomial or a rational function and a...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Prob. 29ECh. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 38ECh. 13.2 - Prob. 39ECh. 13.3 - The derivative of a function f at a number a is...Ch. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13.3 - Prob. 24ECh. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - Prob. 27ECh. 13.3 - Prob. 28ECh. 13.3 - Prob. 29ECh. 13.3 - Inflating a Balloon A spherical balloon is being...Ch. 13.3 - Temperature Change A roast turkey is taken from an...Ch. 13.3 - Heart Rate A cardiac monitor is used to measure...Ch. 13.3 - Prob. 33ECh. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.4 - Let f be a function defined on some interval (a,...Ch. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Prob. 13ECh. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - Prob. 17ECh. 13.4 - Prob. 18ECh. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Prob. 21ECh. 13.4 - Prob. 22ECh. 13.4 - Prob. 23ECh. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Prob. 31ECh. 13.4 - Prob. 32ECh. 13.4 - Prob. 33ECh. 13.4 - Prob. 34ECh. 13.4 - Salt Concentration (a) A tank contains 5000 L of...Ch. 13.4 - Prob. 36ECh. 13.4 - Prob. 37ECh. 13.5 - The graph of a function f is shown below. 1. To...Ch. 13.5 - Prob. 2ECh. 13.5 - Prob. 3ECh. 13.5 - Prob. 4ECh. 13.5 - Prob. 5ECh. 13.5 - Prob. 6ECh. 13.5 - Prob. 7ECh. 13.5 - Prob. 8ECh. 13.5 - Prob. 9ECh. 13.5 - Prob. 10ECh. 13.5 - Prob. 11ECh. 13.5 - Prob. 12ECh. 13.5 - Prob. 13ECh. 13.5 - Prob. 14ECh. 13.5 - Prob. 15ECh. 13.5 - Prob. 16ECh. 13.5 - Prob. 17ECh. 13.5 - Prob. 18ECh. 13.5 - Prob. 19ECh. 13.5 - Prob. 20ECh. 13.5 - Prob. 21ECh. 13.5 - Prob. 22ECh. 13 - Prob. 1RCCCh. 13 - Prob. 2RCCCh. 13 - Prob. 3RCCCh. 13 - Prob. 4RCCCh. 13 - Prob. 5RCCCh. 13 - Prob. 6RCCCh. 13 - Prob. 7RCCCh. 13 - Prob. 8RCCCh. 13 - Prob. 9RCCCh. 13 - Prob. 10RCCCh. 13 - Prob. 11RCCCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 16RECh. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - Prob. 20RECh. 13 - Prob. 21RECh. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - Prob. 24RECh. 13 - Prob. 25RECh. 13 - Prob. 26RECh. 13 - Prob. 27RECh. 13 - Prob. 28RECh. 13 - Prob. 29RECh. 13 - Prob. 30RECh. 13 - Prob. 31RECh. 13 - Prob. 32RECh. 13 - Prob. 33RECh. 13 - Prob. 34RECh. 13 - Prob. 35RECh. 13 - Prob. 36RECh. 13 - Prob. 37RECh. 13 - Prob. 38RECh. 13 - Prob. 39RECh. 13 - Prob. 40RECh. 13 - Prob. 41RECh. 13 - Prob. 42RECh. 13 - Prob. 43RECh. 13 - Prob. 44RECh. 13 - Prob. 45RECh. 13 - Prob. 46RECh. 13 - Prob. 47RECh. 13 - Prob. 48RECh. 13 - Prob. 1TCh. 13 - For the piecewise-defined function f whose graph...Ch. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - Prob. 5TCh. 13 - Prob. 6TCh. 13 - Prob. 7TCh. 13 - Work Done by a Winch A motorized winch is being...Ch. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5PCh. 13 - Prob. 1CRTCh. 13 - Prob. 2CRTCh. 13 - Prob. 3CRTCh. 13 - Prob. 4CRTCh. 13 - Prob. 5CRTCh. 13 - Prob. 6CRTCh. 13 - Prob. 7CRTCh. 13 - Prob. 8CRTCh. 13 - Prob. 9CRTCh. 13 - Prob. 10CRT
Knowledge Booster
Background pattern image
Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Definite Integral Calculus Examples, Integration - Basic Introduction, Practice Problems; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=rCWOdfQ3cwQ;License: Standard YouTube License, CC-BY