
When the rope is at an angle of

(a)
The velocities of A and B just after the impact.
Answer to Problem 13.188P
Explanation of Solution
Given information:
Mass of sphere is
Mass of wedge is
Concept used:
The total linear momentum of two particles is conserved. Therefore:
The co-efficient of restitution is defined as.
The principle of conservation of energy is defined as.
“When a particle moves under the action of conservation of forces. the sum of kinetic energy and potential energy of that particle remains constant.”
Calculation:
At initial stage:
Find the Kinetic and potential energies.
Just before the impact:
Therefore.
Substitute and solve:
Draw impulse momentum diagram.
Apply conservation of momentum in t direction.
Therefore:
For both A and B :
Apply conservation of momentum in x direction.
Substitute:
Therefore:
Apply co-efficient of restitution equation.
Substitute:
Solve.
Solve equation 1 and 2.
Find the magnitude of
Find the angle.
Conclusion:
The velocities of A and B just after the impact is equal to:

(b)
The maximum deflection of the spring.
Answer to Problem 13.188P
Maximum deflection of the spring is
Explanation of Solution
Given information:
Mass of sphere is
Mass of wedge is
Concept used:
The principle of conservation of energy is defined as:
“When a particle moves under the action of conservation of forces. the sum of kinetic energy and potential energy of that particle remains constant”
Calculation:
According to the conservation of energy:
Just after the impact.
Rearrange:
According to sub part a.:
Substitute and solve:
Therefore.
Conclusion:
The maximum deflection is equal to
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- CORRECT AND DETAILED SOLUTION WITH FBD ONLY. I WILL UPVOTE THANK YOU. CORRECT ANSWER IS ALREADY PROVIDED. I REALLY NEED FBD. The roof truss shown carries roof loads, where P = 10 kN. The truss is consisting of circular arcs top andbottom chords with radii R + h and R, respectively.Given: h = 1.2 m, R = 10 m, s = 2 m.Allowable member stresses:Tension = 250 MPaCompression = 180 MPa1. If member KL has square section, determine the minimum dimension (mm).2. If member KL has circular section, determine the minimum diameter (mm).3. If member GH has circular section, determine the minimum diameter (mm).ANSWERS: (1) 31.73 mm; (2) 35.81 mm; (3) 18.49 mmarrow_forwardPROBLEM 3.23 3.23 Under normal operating condi- tions a motor exerts a torque of magnitude TF at F. The shafts are made of a steel for which the allowable shearing stress is 82 MPa and have diameters of dCDE=24 mm and dFGH = 20 mm. Knowing that rp = 165 mm and rg114 mm, deter- mine the largest torque TF which may be exerted at F. TF F rG- rp B CH TE Earrow_forward1. (16%) (a) If a ductile material fails under pure torsion, please explain the failure mode and describe the observed plane of failure. (b) Suppose a prismatic beam is subjected to equal and opposite couples as shown in Fig. 1. Please sketch the deformation and the stress distribution of the cross section. M M Fig. 1 (c) Describe the definition of the neutral axis. (d) Describe the definition of the modular ratio.arrow_forward
- using the theorem of three moments, find all the moments, I only need concise calculations with minimal explanations. The correct answers are provided at the bottomarrow_forwardMechanics of materialsarrow_forwardusing the theorem of three moments, find all the moments, I need concise calculations onlyarrow_forward
- Can you provide steps and an explaination on how the height value to calculate the Pressure at point B is (-5-3.5) and the solution is 86.4kPa.arrow_forwardPROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forwardFind the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





