Concept explainers
A package is thrown down an incline at A with a velocity of 1 m/s. The package slides along the surface ABC to a conveyor belt that moves with a velocity of 2 m/s. Knowing that
(a)
To calculate:
The speed of package atC.
Answer to Problem 13.12P
The speed of package at C:
Explanation of Solution
Given information:
Velocity atA:
Friction coefficient between the package and the surfaceABC:
Velocity of belt:
Distance betweenAandB,
Distance betweenBandC,
Calculations:
Draw the free body diagram of the block on inclineAB:
Free body diagram of the block on level surfaceBC:
Assume that there is no loss of energy at cornerB.
Applying concept of Work and energy:
Solving the equation for
Conclusion:
The answer is calculated by a trigonometric equation and concept of work and energy.
(b)
To calculate:
The distance a package will slide on a conveyor belt before it comes to rest relative to the belt.
Answer to Problem 13.12P
The distance travelled by the package:
Explanation of Solution
Given information:
Friction coefficient between the packages and the surfaceABC:
Velocity of belt:
Speed of package atC:
Calculations:
For the motion of box on the conveyor belt:
Let
Applying the concept of work and energy:
Conclusion:
The distance travelled by the package is calculated by the concept of work and energy and equating the values of mv2, mg and mv2 belt.
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- Collar A has a mass of 3 kg and is attached to a spring of constant 1200 N/m and of undeformed length equal to 0.5 m. The system is set in motion with r = 0.3 m, v0 = 2 m/s, and vr = 0. Neglecting the mass of the rod and the effect of friction, determine (a) the maximum distance between the origin and the collar, (b) the corresponding speed. (Hint: Solve the equation obtained for rby trial and error.)arrow_forwardA 5-kg collar A is at rest on top of, but not attached to, a spring with stiffness k1 = 400 N/m when a constant 150-N force is applied to the cable. Knowing A has a speed of 1 m/s when the upper spring is compressed 75 mm, determine the spring stiffness k2 . Ignore friction and the mass of the pulley.arrow_forwardB6arrow_forward
- Question 2: Packages are thrown down an incline at A with a velocity of 1 m/s. The packages slide along the surface ABC to a conveyor belt which moves with a velocity of 2 m/s. Knowing that µ = 0.25 between the packages and the surface ABC, determine %3D the distance d if the packages are to arrive at C with a velocity of 2 m/s. 1 m/s 2 m/s A 30° Вarrow_forwardBoxes are transported by a conveyor belt with a velocity v0 to a fixed incline at A where they slide and eventually fall off at B. Knowing that μk = 0.40, determine the velocity of the conveyor belt if the boxes are to have zero velocity at B.arrow_forwardA 2-lb collar C may slide without friction along a horizontal rod. It is attached to three springs, each of constant 30 lb/ft and 2-in. undeformed length. Knowing that the collar is released from rest in C the position shown, determine the maximum speed it will reach in the ensuing motion. www D 2 in. A В - 2 in.→-2 in.- wwarrow_forward
- can pls handwritten solution? thank you very much!arrow_forwardA hockey player hits a puck and slides 60 ft for 5 s with a velocity of 4 ft/s on the ice. Determine (a) the initial velocity of the puck, (b) the coefficient of friction between the puck and the ice.arrow_forwardNeed some guidance please...TIAarrow_forward
- A 500-g collar can slide without friction on the curved rod BC in a horizontal plane. Knowing that the undeformed length of the spring is 80 mm and that k= 400 kN/m, determine (a) the velocity that the collar should be given at A to reach B with zero velocity, (b) the velocity of the collar when it eventually reaches C.arrow_forwardA 450-g ball B is moving along a horizontal circular path at a constant speed of 4 m/s. Determine (a) the angle 0 that the cord forms with the vertical line AC, (b) the tension in the cord 2. 1.8 marrow_forward. In an elevator shaft, a ball is thrown vertically upward with an initial velocity of 18 m/s from a height of 12 m above ground. At the same instant, an open-platform elevator passes the 5-m level, moving upward with a constant velocity of 2 m/s. Determine (a) when and where the ball hits the elevator, (b) the relative velocity of the ball with respect to the elevator when the ball hits the elevator.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY