(a)
Find the coefficient of restitution between A and B
(a)
Answer to Problem 13.178P
The coefficient of restitution between A and B
Explanation of Solution
Given information:
The weight of the block A
The weight of the block B
The weight of the block C
The coefficient of friction between the block and plane
The initial speed of the block A
The blocks B and C are at rest.
The distance between the blocks (d) is
The width of the each blocks (b) is
The acceleration due to gravity (g) is
Calculation:
Calculate the mass of the block A
Substitute
Calculate the mass of the block B
Substitute
Calculate the mass of the block C
Substitute
Show the diagram of the block A just before its impact with block B as in Figure (1).
The expression for the initial kinetic energy of the block A at position ‘1’
Here,
The expression for the kinetic energy of the block A at position ‘2’ just before its impact with blocks B
Here,
The expression for the work done by the block A to overcome frictional force
The expression for the principle of work and energy to the block A at position ‘1’ and position ‘2’ just before its impact with block B as follows:
Substitute
Substitute
Show the diagram of the block A just after its impact with block B as in Figure (2).
The expression for the kinetic energy of the block A immediately after the impact
Here,
The block finally comes to stop after the impact. Thus,
The expression for the work done by the block A after the collision to overcome the frictional force
The expression for the principle of work and energy to the block A after it collides with block B to find the velocity of the block A after its impact with B as follows:
Substitute
Substitute
Show the momentum impact diagram of the blocks A and B as in Figure (3).
The expression for the principle of conservation of momentum to the collision between the block A and block B as follows:
Here,
Substitute
Calculate the coefficient of restitution for the impact between the block A and block B
Substitute 0 for
Therefore, the coefficient of restitution between A and B
(b)
Find the displacement (x) of block C.
(b)
Answer to Problem 13.178P
The displacement (x) of block C is
Explanation of Solution
Given information:
The weight of the block A
The weight of the block B
The weight of the block C
The coefficient of friction between the block and plane
The initial speed of the block A
The blocks B and C are at rest.
The distance between the blocks (d) is
The width of the each blocks (b) is
The acceleration due to gravity (g) is
Calculation:
Show the diagram of the block B just before its impact with block C as in Figure (4).
The expression for the kinetic energy of the block B at position ‘2’ just after the impact with block A
The expression for the kinetic energy of the block B just before its impact with blocks C at the position ‘4’
Here,
The expression for the work done by the block B to overcome the frictional force in reaching position ‘4’ from position ‘2’ as follows:
The expression for the principle of work and energy to the block B just before its impact with block C at the position ‘2’ and position ‘4’ as follows:
Substitute
Substitute
Show the momentum impact diagram of the blocks B and C as in Figure (5).
The expression for the principle of conservation of momentum to the collision between the block B and block C as follows:
Substitute
Here,
Substitute
Calculate the coefficient of restitution for the impact between the block B and block C
Substitute 0 for
Show the diagram of the block C after its impact with Block B as in Figure (6).
The expression for the kinetic energy of the block C immediately after its impact with blocks B at position ‘4’
Finally, at the position ‘5’, the block C comes to rest. Thus,
The expression for the work done by the block C to overcome the frictional force in reaching the position ‘5’
Here, x is the distance travelled by the block C before coming to rest.
The expression for the principle of work and energy to the block C after its impact with block B as follows:
Substitute
Substitute
Therefore, displacement (x) of block C is
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
- Two forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forwardNo chatgpt pls will upvotearrow_forward101 the three shafts if the diameter ratio is 2 (D/d = 2)? Ans. na, tension = 1.21, na, bending = 1.19, na, torsion = 1.17. 6.32 A material with a yield strength of S₁ = 350 MPa is subjected to the stress state shown in Sketch c. What is the factor of safety based on the maximum shear stress and distortion energy theories? Ans. For MSST, n, = 11.67. 50 MPa 85 MPa 20 MPa 70 MPa Sketch c, for Problems 6.32 and 6.33arrow_forward
- Can you draw the left view of the first orthographic projectionarrow_forwardImportant: I've posted this question twice and received incorrect answers. I've clearly stated that I don't require AI-generated working out. I need a genuine, expert-written solution with proper working. If you can't provide that, refer this question to someone who can please!. Note: Please provide a clear, step-by-step handwritten solution (no AI involvement). I require an expert-level answer and will assess it based on quality and accuracy with that I'll give it a thumbs up or down!. Hence, refer to the provided image for clarity. Double-check everything for correctness before submitting. Thank you!arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question:arrow_forward
- Note: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting appreciate your time and effort!. Question: If the flow rate through the system below is 0.04m3s-1, find the difference in elevation H of the two reservoirs.arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question: (In the image as provided)arrow_forwardNote: Please provide a clear, step-by-step simplified handwritten working out (no explanations!), ensuring it is done without any AI involvement. I require an expert-level answer, and I will assess and rate based on the quality and accuracy of your work and refer to the provided image for more clarity. Make sure to double-check everything for correctness before submitting thanks!. Question: The rectangular gate shown below is 3 m wide. Compute the force P needed to hold the gate in the position shown.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY