CENGEL'S 9TH EDITION OF THERMODYNAMICS:
9th Edition
ISBN: 9781260917055
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 47P
To determine
Whether the specific internal energy of a gas mixture equals to the sum of the specific internal energies of each individual gas in the mixture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mixture of gaseous reactants is put into a cylinder, where a chemical reaction turns them into gaseous products. The
cylinder has a piston that moves in or out, as necessary, to keep a constant pressure on the mixture of 1 atm. The
cylinder is also submerged in a large insulated water bath. (See sketch at right.)
1 atm pressure
piston
cylinder
From previous experiments, this chemical reaction is known to absorb 322. kJ of energy.
water bath
The temperature of the water bath is monitored, and it is determined from this data that 188. kJ of heat flows out of the
gases
system during the reaction.
O exothermic
Is the reaction exothermic or endothermic?
O endothermic
O up
Does the temperature of the water bath go up or
?
O down
down?
O neither
O in
Does the piston move in or out?
O out
O neither
O does work
Does the gas mixture do work, or is work done
on it?
O work
done on it
O neither
How much work is done on (or by) the gas
mixture? Be sure your answer has the correct
number of…
Which is the physical property to express deviations of pressure between an ideal mixture and areal gas mixture?
Problem 13.033 Specific Heat and Molecular Weight
The volumetric analysis of a mixture of gases is 30 percent oxygen, 40 percent nitrogen, 10 percent carbon dioxide, and 20 percent
methane. Calculate the apparent specific heats and molecular weight of this mixture of gases. The universal gas constant is Ru = 8.314
kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas
specific heats of various common gases.
The apparent molecular weight of this mixture of gases is
The constant-pressure specific heat of the mixture is
The constant-volume specific heat of the mixture is
kg/kmol.
kJ/kg-K.
kJ/kg-K.
Chapter 13 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Specific volume of the mixture is given by *arrow_forwardA gas mixture is 30% Gas A, 20% Gas B, 25 % Gas C and 25% Gas D. Determine the partial pressure of Gas B when the total pressure of the gas mixture is 800 psi.arrow_forward0.5 kg of Helium and 0.5 kg of nitrogen are mixed at 20 degrees * C and at a total pressure of 100 kPa. Find (a) the volume of the mixture (b) the partial volumes of the components (c) the partial pressures of the components (d) the mole fraction of the components (e) the specific heats c_{p} and c, of the mixture and (f) the gas constant of the mixture.arrow_forward
- 0.5 kg of Helium and 0.5 kg of nitrogen are mixed at 20 degrees * C and at a total pressure of 100 kPa. Find (a) the volume of the mixture (b) the partial volumes of the components (c) the partial pressures of the components (d) the mole fraction of the components (e) the specific heats c_{p} and c, of the mixture and (f) the gas constant of the mixture.arrow_forwardThe viscosity values for the H2 and Freon-12 gas mixtures at 25 ° C and 1 atm pressure and the mole fractions of the mixture are given in the table below. For H2 and Freon-12, calculate the viscosity values of the mixture for 3 different compositions using pure viscosity values. H2 Mol Frac. 0,00 0,25 0,50 0,75 1,00 Viscosity (µ) x 106 (poise) 124,0 128,1 131,9 135,1 88,4arrow_forwardThe gas constant of CO2, N2, and He are 0.1889, 0.2968, and 2.077 kJ/kg-°K respectively. The three are mixed with 0.4 kg CO2, 0.7 kg, N2, and 0.05 kg He. The mixture has a temperature of 35°C and pressure of 180 kPa. Calculate the volume of the mixture in cubic meters. 0.1598 0.6625 0.7856arrow_forward
- A gas mixture has the following composition on a mole basis: 60 percent N₂ and 40 percent CO2. Determine the gravimetric analysis of the mixture, its molar mass, and the gas constant. The universal gas constant is Ru= 8.314 kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties. The mass fraction of N₂ is 48.8 %. The mass fraction of CO2 is 51.2 %. The molar mass of the mixture is The gas constant of the mixture is 197 kg/kmol. 197 kJ/kg-K.arrow_forwardGive me right solutions with clear calculationsarrow_forwardsolve the question given in the image.arrow_forward
- What is the molecular weight, enthalpy (kJ/kg), and entropy (kJ/(kg K)) of a gas mixture at P = 1000 kPa and T = 1000 K, if the mixture contains the following species and mole fractions? Species 3₁ CO₂ H₂O N₂ CO 0.10 0.15 0.70 0.05arrow_forwardRP-1 is highly refined form of kerosene used for many first stage rocket engines. The average composition of it is indicated by CH1.9 a. What is the stoichiometric mixture ratio (MR) for RP-1 and oxygen? b. Now, you have a mixture of air and RP-1 with three times more air (in terms of moles) than is needed to burn all the fuel. How high is the final temperature? The heats of formation are given in the table below. In molar quantities, assume 1 mole of air is (O2+3.76N2). The reactants have a temperature of 25°C before combustion. You may use the average values of the specific heats for each constituent. C. Would the adiabatic flame temperature be lower or higher for a rocket engine that uses pure oxygen instead of air? Explain. Constituent Qf kJ/kmol @ 298 K Cp kJ/kmol K CH19 9,358 CO2 (g) -393,522 51.9 O2 (g) 0 34.0 N2 (g) 0 31.6 H₂0 (g) -241.827 40.6arrow_forwardA gas mixture consists of methane (CH4) and carbon dioxide (CO2). The mass fraction of CH4 is 0.48. The total mass is 10 kg. Determine the gas constant of the mixture in kJ/kg-K. Use four decimal places for your final answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Chemical and Phase Equilibrium; Author: LearnChemE;https://www.youtube.com/watch?v=SWhZkU7e8yw;License: Standard Youtube License