Concept explainers
a)
The total entropy change and exergy destruction by treating the mixture as an ideal gas.
a)
Answer to Problem 73P
The entropy generated is
The energy destroyed is
Explanation of Solution
Write the entropy balance equation to obtain the expression of entropy generation in terms of
Here, mass of
Write the expression to obtain the energy destroyed during a process
Here, initial temperature is
Conclusion:
Refer Table A-2b, “Ideal gas specific heats of various common gases”, obtain the specific heat at constant pressure of
From Equation (I) obtain the value of
The partial pressure of
Here, constant pressure specific heat is
Substitute 6 kg for
From Equation (I) obtain the value of
The partial pressure of
Substitute
Substitute
Thus, the entropy generated is
Substitute 293 K for
Thus, the energy destroyed is
b)
The total entropy change and exergy destruction by treating the mixture as a non ideal gas using Amagat’s law.
b)
Answer to Problem 73P
The entropy generation is
The energy destroyed is
Explanation of Solution
Write the expression to obtain the initial reduced temperature of
Here, critical temperature of
Write the expression to obtain the initial and final reduced pressure of
Here, critical temperature of
Write the expression to obtain the final reduced temperature of
Here, critical temperature of
Write the expression to obtain the initial reduced temperature of
Here, critical temperature of
Write the expression to obtain the initial and final reduced pressure of
Here, critical temperature of
Write the expression to obtain the final reduced temperature of
Here, critical temperature of
Write the expression to obtain the entropy change for
Write the expression to obtain the entropy change for
Here, number of moles of
Write the expression to obtain the surrounding entropy change
Here, surrounding heat is
Write the expression to obtain the entropy generation
Write the expression to obtain the energy destroyed during a process
Here, initial temperature is
Conclusion:
Substitute 160 K for
Substitute 5 MPa for
Substitute 200 K for
Refer Figure A-30, “Generalized entropy departure chart”, obtain the value of
Substitute 160 K for
Substitute 5 MPa for
Substitute 200 K for
Refer Figure A-30, “Generalized entropy departure chart”, obtain the value of
Substitute
Substitute 0.75 kmol for
Substitute –4,745 kJ for
Substitute
Thus, the entropy generation is
Substitute 293 K for
Thus, the energy destroyed is
Want to see more full solutions like this?
Chapter 13 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- A frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the entropy change of the water in kJ/K.arrow_forwardA mole sample of liquid ammonia at 273 Kelvin is cooled to liquid ammonia at 240 Kelvin. The process is done irreversibly by placing the sample in liquid nitrogen at 77 Kelvin. The heat capacity relationship for ammonia gas is given below. Assuming that the heat of vaporization is 23.4 KiloJoules per mole, answer the questions that follow. What is the entropy change of this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the entropy change of the surroundings for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES. What is the total entropy change (or the entropy of the universe) for this process (in Joules per Kelvin)? Express answer in THREE SIGNIFICANT FIGURES.arrow_forwardArgon gas expands from 3.5 MPa and 100°C to 500 kPa in an adiabatic expansion valve. For environment conditions of 100 kPa and 25°C, determine the exergy destruction during the process.arrow_forward
- Required information Problem 07.021 - DEPENDENT MULTI-PART PROBLEM - ASSIGN ALL PARTS NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. During the isothermal heat addition process of a Carnot cycle, 700 kJ of heat is added to the working fluid from a source at 400°C. Problem 07.021.c - Total entropy change for the process Determine the total entropy change for the process. The total entropy change for the process is KJ/K.arrow_forwardA frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the total entropy generation during this process in kJ/K.arrow_forwardA frictionless piston-cylinder device contains a saturated liquid-vapor mixture of water at 400K. During a constant pressure, process, 960 kJ of heat is transferred to the surrounding air at 300K. As a result, part of the water vapor contained in the cylinder condenses. Determine the entropy change of the surrounding air in kJ/K.arrow_forward
- Determine the entropy change of 1.5 moles of ammonia that is heated from 180°C to 750°C. The system operates at an atmospheric pressure on a steady flow process.arrow_forwardHello I need help with the following problemarrow_forwardCase 1: 1 kg of water initially at 20 C is heated to 100 C by contact with a heat reservoir at 100 C. Assume Cp for water is constant at 4.2 kJ/ kg *K. What is the entropy change of the water? What is the entropy change of the reservoir? What is ΔSTotal ? Case 2: Now, as an alternative, 1 kg of water at 20 C is first heated to 60 C by contact with a heat reservoir at 60 C, and then this water is heated from 60 C to 100 C by contact with a heat reservoir at 100 C. What is the entropy change of the water? What is the entropy change of the reservoir? What is ΔSTotal ?arrow_forward
- Write down the equation for macroscopic entropy change ∆S in a process taking a system between equilibrium states a and b in terms of infinitesimal heat flow and the temperature at which it occurs.arrow_forwardArrange the given systems in order from highest entropy to lowest entropy. liquid salt water at -10°C spring water vapor at 100°C Highest entropy Lowest entropy Answer Bank other entropies equal all entropies equal solid spring water at -2°Carrow_forwardWhat is entropy and its application?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY