PROBABILITY & STATS FOR ENGINEERING &SCI
9th Edition
ISBN: 9781285099804
Author: DEVORE
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.2, Problem 18E
Failures in aircraft gas turbine engines due to high cycle fatigue is a pervasive problem. The article “Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys” (J. of Engineering for Gas Turbines and Power, 2002: 161–176) gave the accompanying data and fit a nonlinear regression model in order to predict strain amplitude from cycles to failure. Fit an appropriate model, investigate the quality of the fit, and predict amplitude when cycles to failure 5 5000.
Obs | Cycfail | Strampl | Obs | Cycfail | Strampl |
1 | 1326 | .01495 | 11 | 7356 | .00576 |
2 | 1593 | .01470 | 12 | 7904 | .00580 |
3 | 4414 | .01100 | 13 | 79 | .01212 |
4 | 5673 | .01190 | 14 | 4175 | .00782 |
5 | 29516 | .00873 | 15 | 34676 | .00596 |
6 | 26 | .01819 | 16 | 114789 | .00600 |
7 | 843 | .00810 | 17 | 2672 | .00880 |
8 | 1016 | .00801 | 18 | 7532 | .00883 |
9 | 3410 | .00600 | 19 | 30220 | .00676 |
10 | 7101 | .00575 |
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please use SPSS to solve!
This exercise requires the use of a computer pack-age. The article “Movement and Habitat Use by Lake Whitefish During Spawning in a Boreal Lake: Inte-grating Acoustic Telemetry and Geographic Informa-tion Systems” (Transactions of the American Fisheries Society [1999]: 939–952) included the accompanying data on 17 fish caught in 2 consecutive years.
a. Fit a multiple regression model to describe the rela-tionship between weight and the predictors length and age. y^5 2 511 1 3.06 length 2 1.11 ageb. Carry out the model utility test to determine whether at least one of the predictors length and age are useful for predicting weight.
2. The authors of the paper "Age, Spacing and Growth Rate of Tamarix as an Indication of
Lake Boundary Fluctuations at Sebkhet Kelbia, Tunisia" (J. of Arid Environ. (1982):43-
51) used a simple linear regression model to describe the relationship between y = vigor
(average width in centimeters of the last two annual rings) and x
(stems/m?). Data on which the estimated model was based is as follows.
4
= stem density
6
9
14
15
15
19
21
22
y
.75
1.20
.55
.60
.65
.55
.35
.45
.40
Construct a scatter plot for the data.
a)
b) Find the estimated regression line and draw it on your scatter plot.
Determine and interpret the coefficient of determination.
c)
d) What is your estimate of the average change in vigor associated with a 1-unit increase in
stem density?
What would you predict vigor to be for a plant whose density was 17 stems/m2?
e)
An article described an experiment carried out to assess the impact of the
variable x₁ = force (gm), x₂ = power (mW), x3 = temperature (°C), and
time (msec) on y
ball bond shear strength (gm).
X4 =
=
The estimated regression equation is
y = -37.48 +0.2117x₁ +0.4983x2 +0.1297x3 +0.2583x4
Interpret b3 and b4.
● What is the expected value of strength (y) from a force of 35 gm,
power of 75 mW, temperature of 200 °C, and time of 20 msec ?
Chapter 13 Solutions
PROBABILITY & STATS FOR ENGINEERING &SCI
Ch. 13.1 - Suppose the variables x = commuting distance and y...Ch. 13.1 - Prob. 2ECh. 13.1 - Prob. 3ECh. 13.1 - Prob. 4ECh. 13.1 - As the air temperature drops, river water becomes...Ch. 13.1 - The accompanying scatterplot is based on data...Ch. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - Consider the following four (x, y) data sets; the...Ch. 13.1 - a. Show that i=1nei=0 when the eis are the...
Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - If there is at least one x value at which more...Ch. 13.2 - No tortilla chip aficionado likes soggy chips, so...Ch. 13.2 - Polyester fiber ropes are increasingly being used...Ch. 13.2 - The following data on mass rate of burning x and...Ch. 13.2 - Failures in aircraft gas turbine engines due to...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Mineral mining is one of the most important...Ch. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Kyphosis refers to severe forward flexion of the...Ch. 13.2 - Prob. 25ECh. 13.3 - The following data on y 5 glucose concentration...Ch. 13.3 - The viscosity (y) of an oil was measured by a cone...Ch. 13.3 - Prob. 29ECh. 13.3 - The accompanying data was extracted from the...Ch. 13.3 - The accompanying data on y 5 energy output (W) and...Ch. 13.3 - Prob. 32ECh. 13.3 - Prob. 33ECh. 13.3 - The following data resulted from an experiment to...Ch. 13.3 - The article The Respiration in Air and in Water of...Ch. 13.4 - Cardiorespiratory fitness is widely recognized as...Ch. 13.4 - A trucking company considered a multiple...Ch. 13.4 - Let y = wear life of a bearing, x1 = oil...Ch. 13.4 - Let y = sales at a fast-food outlet (1000s of ),...Ch. 13.4 - The article cited in Exercise 49 of Chapter 7 gave...Ch. 13.4 - The article A Study of Factors Affecting the Human...Ch. 13.4 - An investigation of a die-casting process resulted...Ch. 13.4 - Prob. 43ECh. 13.4 - The accompanying Minitab regression output is...Ch. 13.4 - The article Analysis of the Modeling Methodologies...Ch. 13.4 - A regression analysis carried out to relate y =...Ch. 13.4 - Efficient design of certain types of municipal...Ch. 13.4 - An experiment to investigate the effects of a new...Ch. 13.4 - Prob. 49ECh. 13.4 - Prob. 50ECh. 13.4 - The article Optimization of Surface Roughness in...Ch. 13.4 - Utilization of sucrose as a carbon source for the...Ch. 13.4 - Prob. 53ECh. 13.4 - Prob. 54ECh. 13.5 - The article The Influence of Honing Process...Ch. 13.5 - Prob. 56ECh. 13.5 - In the accompanying table, we give the smallest...Ch. 13.5 - Prob. 58ECh. 13.5 - Prob. 59ECh. 13.5 - Pillar stability is a most important factor to...Ch. 13.5 - Prob. 61ECh. 13.5 - Prob. 62ECh. 13.5 - Prob. 63ECh. 13.5 - Prob. 64ECh. 13 - Curing concrete is known to be vulnerable to shock...Ch. 13 - Prob. 66SECh. 13 - The article Validation of the Rockport Fitness...Ch. 13 - Feature recognition from surface models of...Ch. 13 - Air pressure (psi) and temperature (F) were...Ch. 13 - An aeronautical engineering student carried out an...Ch. 13 - An ammonia bath is the one most widely used for...Ch. 13 - The article An Experimental Study of Resistance...Ch. 13 - The accompanying data on x = frequency (MHz) and y...Ch. 13 - Prob. 74SECh. 13 - Prob. 75SECh. 13 - The article Chemithermomechanical Pulp from Mixed...Ch. 13 - Prob. 77SECh. 13 - Prob. 78SECh. 13 - Prob. 79SECh. 13 - Prob. 80SECh. 13 - Prob. 81SECh. 13 - Prob. 82SECh. 13 - Prob. 83SE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- The article "Earthmoving Productivity Estimation Using Linear Regression Techniques" (S. Smith, Journal of Construction Engineering and Management, 1999:133–141) presents the following linear model to predict earth-moving productivity (in m3 moved per hour): Productivity = - 297.877 + 84.787x, + 36.806x, + 151.680x, – 0.081x, – 110.517x5 - 0.267.x, – 0.016x,x, +0.107.x,x5 + 0.0009448x,x, – 0.244x;x, where X1 = number of trucks X2 = number of buckets per load X3 = bucket volume, in m³ X4 = haul length, in m X5 = match factor (ratio of hauling capacity to loading capacity) X6 = truck travel time, in s If the bucket volume increases by 1 m², while other independent variables are unchanged, can you determine the change in the predicted productivity? If so, determine it. If not, state what other information you would need to determine it. b. If the haul length increases by 1 m, can you determine the change in the predicted productivity? If so, determine it. If not, state what other…arrow_forwardSnowpacks contain a wide spectrum of pollutants thatmay represent environmental hazards. The article“Atmospheric PAH Deposition: Deposition Velocitiesand Washout Ratios” (J. of EnvironmentalEngineering, 2002: 186–195) focused on the depositionof polyaromatic hydrocarbons. The authors proposeda multiple regression model for relating depositionover a specified time period (y, in mg/m2) to tworather complicated predictors x1 (mg-sec/m3) and x2 (mg/m2), defined in terms of PAH air concentrations forvarious species, total time, and total amount of precipitation.Here is data on the species fluoranthene andcorresponding Minitab output:obs x1 x2 flth1 92017 .0026900 278.782 51830 .0030000 124.533 17236 .0000196 22.654 15776 .0000360 28.685 33462 .0004960 32.666 243500 .0038900 604.707 67793 .0011200 27.698 23471 .0006400 14.189 13948 .0004850 20.6410 8824 .0003660 20.6011 7699 .0002290 16.6112 15791 .0014100 15.0813 10239 .0004100 18.0514 43835 .0000960 99.7115 49793 .0000896 58.9716 40656…arrow_forwardWrinkle recovery angle and tensile strength are the two most important characteristics for evaluating the performance of crosslinked cotton fabric. An increase in the degree of crosslinking, as determined by ester carboxyl band absorbance, improves the wrinkle resistance of the fabric (at the expense of reducing mechanical strength). The accompanying data on x = absorbance and y = wrinkle resistance angle was read from a graph in the paper "Predicting the Performance of Durable Press Finished Cotton Fabric with Infrared Spectroscopy".† x 0.115 0.126 0.183 0.246 0.282 0.344 0.355 0.452 0.491 0.554 0.651 y 334 342 355 363 365 372 381 392 400 412 420 Here is regression output from Minitab: Predictor Constant absorb S = 3.60498 Coef 321.878 156.711 SOURCE Regression Residual Error Total SE Coef 2.483 6.464 R-Sq = 98.5% DF 1 9 10 SS 7639.0 117.0 7756.0 T 129.64 24.24 0.000 0.000 R-Sq (adj) = 98.3% MS 7639.0 13.0 F P 587.81 (a) Does the simple linear regression model appear to be…arrow_forward
- Wrinkle recovery angle and tensile strength are the two most important characteristics for evaluating the performance of crosslinked cotton fabric. An increase in the degree of crosslinking, as determined by ester carboxyl band absorbance, improves the wrinkle resistance of the fabric (at the expense of reducing mechanical strength). The accompanying data on x = absorbance and y = wrinkle resistance angle was read from a graph in the paper "Predicting the Performance of Durable Press Finished Cotton Fabric with Infrared Spectroscopy".t 半 0.115 0.126 0.183 0.246 0.282 0.344 0.355 0.452 0.491 0.554 0.651 334 342 355 363 365 372 381 392 400 412 420 Here is regression output from Minitab: Predictor Coef SE Coef P Constant 321.878 2.483 129.64 0.000 absorb 156.711 6.464 24.24 0.000 S = 3.60498 R-Sq = 98.5% R-Są (adj) - 98.3% SOURCE DF MS F P Regression 1 7639.0 7639.0 587.81 0.000 Residual Error 9 117.0 13.0 Total 10 7756.0 (a) Does the simple linear regression model appear to be…arrow_forwardWrinkle recovery angle and tensile strength are the two most important characteristics for evaluating the performance of crosslinked cotton fabric. An increase in the degree of crosslinking, as determined by ester carboxyl band absorbance, improves the wrinkle resistance of the fabric (at the expense of reducing mechanical strength). The accompanying data on x = absorbance and y = wrinkle resistance angle was read from a graph in the paper "Predicting the Performance of Durable Press Finished Cotton Fabric with Infrared Spectroscopy".t x 0.115 0.126 0.183 0.246 0.282 0.344 0.355 0.452 0.491 0.554 0.651 y 334 342 355 363 365 372 381 400 392 412 420 Here is regression output from Minitab: Predictor Constant absorb S = 3.60498 Coef 321.878 156.711 SOURCE Regression Residual Error Total R-Sq= 98.5% DF SE Coef 2.483 6.464 1 9 10 SS 7639.0 117.0 7756..0 T 129.64 24.24 P 0.000 0.000. R-Sq (adj) 98.3% MS 7639.0 13.0 F 587.81 (a) Does the simple linear regression model appear to be appropriate?…arrow_forwardThe cotton aphid poses a threat to cotton crops in Iraq. The accompanying data on y = infestation rate (aphids/100 leaves) X1 = mean temperature (°C) x, = mean relative humidity appeared in the article “Estimation of the Economic Threshold of Infestation for Cotton Aphid" (Mesopotamia Journal of Agriculture [1982]: 71–75). Use the data to find the estimated regression equation and assess the utility of the multiple regression model y = a + Bjx1 + Bx2 + e y X1 X2 y X1 X2 61 21.0 57.0 77 24.8 48.0 87 28.3 41.5 93 26.0 56.0 98 27.5 58.0 100 27.1 31.0 104 26.8 36.5 118 29.0 41.0 102 28.3 40.0 74 34.0 25.0 63 30.5 34.0 43 28.3 13.0 27 30.8 37.0 19 31.0 19.0 14 33.6 20.0 23 31.8 17.0 30 31.3 21.0 25 33.5 18.5 67 33.0 24.5 40 34.5 16.0 34.3 6.0 21 34.3 26.0 18 33.0 21.0 23 26.5 26.0 42 32.0 28.0 56 27.3 24.5 60 27.8 39.0 59 25.8 29.0 82 25.0 41.0 89 18.5 53.5 77 26.0 51.0 102 19.0 48.0 108 18.0 70.0 97 16.3 79.5 Given: significance level = 0.05 Required: 1. Regression Equation 2. F and…arrow_forward
- 4arrow_forwardSports scientists want to use nuclear magnetic resonance spectroscopy, NMR, to predict the muscle fibre composition in the thighs of athletes. They obtained the data in the screenshot, which contains three variables: FTF – the percentage of fast twitch fibres in the muscle. T1 – the T1 relaxation time measured in ms. T2 – the T2 relaxation time measured in ms. Perform a multiple linear regression using the model FTF = b0 + b1T1 + b2T2. i) What are the values of the three coefficients in the equation? ii) What is the F statistic and P value for the regression? Do these indicate that the regression is significant? iii) Does adding the other NMR relaxation time, T2, to the predictive equation significantly improve the ability of NMR spectroscopy to predict muscle fibre type? Explain your conclusions.arrow_forwardThe compressive strength of a concrete and the curing time arebelieved to related. An investigator conducts an experiment at AIT laband data is presented below. Compressive strength Curing time(days) 24 7 28 8 18 6 16 5 10 2 13 3 a. Obtain the linear regression model of the form, for thepairs of data provided b) Estimate the compressive strength on day 4 using the regressionmodel in aboveb) Test the significance of the regression coefficient.arrow_forward
- The model developed from sample data that has the form of Yhat = bo +bjX is known as the multiple regression model with two predictor variables. (True or False) O True O Falsearrow_forwardO Suppose amultiple Regression Model 9 = B. + R, X1 +. . +RXk+ E ory=xB+E @EStiMate BS . O show that Bis unbiaS.arrow_forwardSolve using excel or spreadsheet and show data analysis (regression table)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY