DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
8th Edition
ISBN: 9781260521337
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.2, Problem 15E
Construct a finite-state machine for a restricted telephone system that implements these rules. Only calls to the telephone numbers 0, 911, and the digit 1 followed by 10-digit telephone numbers that lith212, 800, 866, 877, and 888 are sent to the network. All other strings of digits are blocked by the system and the user hears an error message.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose a company needs temporary passwords for the trial of a new payroll software. Each password will have two letters, followed by one digit, followed by one letter. The letter
W
will not be used. So, there are
25
letters and
10
digits that will be used. Assume that the letters can be repeated. How many passwords can be created using this format?
A large corporation is concerned with security and identify theft. So, unsteady of using workers names, they are going to assign each person a code. It will consist of two letters, followed by two digits. How many different codes exist
A company that sells its product on their website would like to improve the sales by making the webpage with product info more attractive. Current version (call
it version A) and a new version (call it version B) are compared. A JavaScript code randomly chooses one of the two versions of the website to load to each
customer that clicks on the link to the page about the product.
Each version of the page has Buy button that leads the customer to purchase the product online. The company would like to test whether the new version
(B) is better than the old one (A) by comparing the true probabilities pA and PB of purchasing the product for a randomly chosen visit of each website.
Let Pд be probability that a randomly chosen visitor of website version A buys the product from the website. Similarly, let pg be the corresponding probability
for version B. Let n₁ and n₂ be sample sizes of the visitors of versions A and B, respectively. Also, denote by X1 and X2 the numbers of visitors in the two…
Chapter 13 Solutions
DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
Ch. 13.1 - Exercises 1-3 refer to the grammar with start...Ch. 13.1 - Exercises 1-3 refer to the grammar with start...Ch. 13.1 - Prob. 3ECh. 13.1 - Let G=(V,T,S,P) be the phrase-structure grammar...Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Show that the grammar given in Example 5 generates...Ch. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Construct a derivation of 021222 in the grammar...Ch. 13.1 - Show that the grammar given in Example 7 generates...Ch. 13.1 - s13. Find a phrase-structure grammar for each of...Ch. 13.1 - Find a phrase-structure grammar for each of these...Ch. 13.1 - Find a phrase-structure grammar for each of these...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Prob. 19ECh. 13.1 - A palindrome is a string that reads the same...Ch. 13.1 - Let G1 and G2 be context-free grammars, generating...Ch. 13.1 - Prob. 22ECh. 13.1 - Construct derivation trees for the sentences in...Ch. 13.1 - Let G be the grammar with V={a,b,c,S};T={a,b,c} ;...Ch. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - a) Explain what the productions are in a grammar...Ch. 13.1 - Prob. 29ECh. 13.1 - a) Construct a phrasestructure grammar for the set...Ch. 13.1 - Give production rules in Backus-Naur form for an...Ch. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Prob. 38ECh. 13.1 - Prob. 39ECh. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - Let G be a grammar and let R be the relation...Ch. 13.2 - Draw the state diagrams for the finite-state...Ch. 13.2 - Give the state tables for the finite-state machine...Ch. 13.2 - Find the output generated from the input string...Ch. 13.2 - Find the output generated from the input string...Ch. 13.2 - Find the output for each of these input strings...Ch. 13.2 - Find the output for each of these input strings...Ch. 13.2 - Construct a finite-state machine that models an...Ch. 13.2 - Prob. 8ECh. 13.2 - Construct a finite-state machine that delays an...Ch. 13.2 - Construct a finite-state machine that changes...Ch. 13.2 - Construct a finite-state machine for the log-on...Ch. 13.2 - Construct a finite-state machine for lock that...Ch. 13.2 - Construct a finite-state machine for a toll...Ch. 13.2 - Construct a finite-state machine for entering a...Ch. 13.2 - Construct a finite-state machine for a restricted...Ch. 13.2 - Construct a finite-state machine that gives an...Ch. 13.2 - Prob. 17ECh. 13.2 - Construct a finite-state machine that determines...Ch. 13.2 - Construct a finite-state machine that determines...Ch. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Find the output string generated by the Moore...Ch. 13.2 - Prob. 23ECh. 13.2 - Construct a Moore machine that gives an output of...Ch. 13.2 - Prob. 25ECh. 13.3 - Prob. 1ECh. 13.3 - 2. Show that if A is a set of strings, then.
Ch. 13.3 - Find all pairs of sets of strings A and B for...Ch. 13.3 - Show that these equalities hold. a) {}*={} b)...Ch. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Determine whether the string 01001 is in each of...Ch. 13.3 - Determine whether each of these strings is...Ch. 13.3 - Determine whether each of these strings is...Ch. 13.3 - Determine whether all the strings in each of these...Ch. 13.3 - Show that if M=(S,I,f,so,F) is a deterministic...Ch. 13.3 - Given a finite-state automaton M=(S,I,f,so,F) ,...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - Prob. 22ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 27ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 29ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 33ECh. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Use Exercise 39 finite-state automata constructed...Ch. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - In Exercises 43-49 find the language recognized by...Ch. 13.3 - Prob. 47ECh. 13.3 - In Exercises 43-49 find the language recognized by...Ch. 13.3 - Prob. 49ECh. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Prob. 51ECh. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a nondeterministic finite-state automaton...Ch. 13.3 - Prob. 57ECh. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Prob. 60ECh. 13.3 - Prob. 61ECh. 13.3 - Prob. 62ECh. 13.4 - Describe in words the strings in each of these...Ch. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Construct deterministic finite-state automata that...Ch. 13.4 - Construct nondeterministic finite-state automata...Ch. 13.4 - Construct nondeterministic finite-state automata...Ch. 13.4 - Show that if A is a regular set, then AR, the set...Ch. 13.4 - Using the construction described in the proof of...Ch. 13.4 - Using the construction described in the proof of...Ch. 13.4 - Construct a nondeterministic finite-state...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - Show that the finite-state automaton constructed...Ch. 13.4 - Show that the regular grammar constructed from a...Ch. 13.4 - Show that every nondeterministic finite-state...Ch. 13.4 - Let M=(S,I,f,s0,F) be a deterministic finite-state...Ch. 13.4 - One important technique used to prove that certain...Ch. 13.4 - Show that the set 02n1nn=0,1,2,... is not regular...Ch. 13.4 - Show that the set {1n2n=0,1,2,...} is not regular...Ch. 13.4 - Show that the set of palindromes over {0, 1} is...Ch. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Use Exercise 29 to show that the language...Ch. 13.5 - Let T be the Turing machine defined by the...Ch. 13.5 - Let T be the Turing machine defined by the...Ch. 13.5 - What does the Turing machine defined by the...Ch. 13.5 - What does the Turing machine described by the...Ch. 13.5 - What does the Turing machine described by the...Ch. 13.5 - Construct a Turing machine with tape 0, 1, and B...Ch. 13.5 - Construct a Turning machine with tape symbols 0,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Show at each step the contents of the tape of the...Ch. 13.5 - Explain why the Turing machine in Example 3...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turning machine that computes the...Ch. 13.5 - Prob. 27ECh. 13.5 - Prob. 28ECh. 13.5 - Which of the following problems is a decision...Ch. 13.5 - Which of the following problems is a decision...Ch. 13.5 - Prob. 31ECh. 13.5 - Show that the function B(n) cannot be computed by...Ch. 13 - a) Define a phrase-structure grammar. b) What does...Ch. 13 - a) What is the language generated by a...Ch. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - a) What is a finite-state machine? b) Show how a...Ch. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - a) Define a nondeterministic finite-state...Ch. 13 - a) Define the set of regular expressions over a...Ch. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Describe how Turing machines are used to recognize...Ch. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 1SECh. 13 - Prob. 2SECh. 13 - Prob. 3SECh. 13 - Prob. 4SECh. 13 - Prob. 5SECh. 13 - Prob. 6SECh. 13 - Prob. 7SECh. 13 - Prob. 8SECh. 13 - Prob. 9SECh. 13 - Prob. 10SECh. 13 - Prob. 11SECh. 13 - Prob. 12SECh. 13 - Prob. 13SECh. 13 - Construct a finite-state machine with output that...Ch. 13 - Construct a finite-state machine with output that...Ch. 13 - Prob. 16SECh. 13 - Prob. 17SECh. 13 - Prob. 18SECh. 13 - Construct a deterministic finite-state automaton...Ch. 13 - Prob. 20SECh. 13 - Prob. 21SECh. 13 - Prob. 22SECh. 13 - Prob. 23SECh. 13 - Prob. 24SECh. 13 - Prob. 25SECh. 13 - Show that {02nnN} is not regular. You may use the...Ch. 13 - Prob. 27SECh. 13 - Prob. 28SECh. 13 - Construct a Turing machine that computes the...Ch. 13 - Prob. 30SECh. 13 - Prob. 1CPCh. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - Given the state table of a Moore machine and an...Ch. 13 - Given the state table of a Mealy machine and an...Ch. 13 - Given the state table of a deterministic...Ch. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CPCh. 13 - Given a regular grammar, construct a finite-state...Ch. 13 - Given a finite-state automaton, construct a...Ch. 13 - Prob. 13CPCh. 13 - Solve the busy beaver problem for two states by...Ch. 13 - Prob. 2CAECh. 13 - Prob. 3CAECh. 13 - Prob. 4CAECh. 13 - Prob. 5CAECh. 13 - Prob. 1WPCh. 13 - Describe the Backus-Naur form (and extended...Ch. 13 - Explain how finite-state machines are used by...Ch. 13 - Explain how finite-state machines are used in the...Ch. 13 - Explain how finite-state machines are used in...Ch. 13 - Compare the use of Moore machines versus Mealy...Ch. 13 - Explain the concept of minimizing finite-state...Ch. 13 - Give the definition of cellular automata, Explain...Ch. 13 - Define a pushdown automaton. Explain how pushdown...Ch. 13 - Define a linear-bounded automaton. Explain how...Ch. 13 - Prob. 11WPCh. 13 - Prob. 12WPCh. 13 - Prob. 13WPCh. 13 - Show that a Turing machine can simulate any action...Ch. 13 - Prob. 15WPCh. 13 - Describe the basic concepts of the lambda-calculus...Ch. 13 - Show that a Turing machine as defined in this...Ch. 13 - Prob. 18WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Suppose that the check digit is computed as described in Example . Prove that transposition errors of adjacent digits will not be detected unless one of the digits is the check digit. Example Using Check Digits Many companies use check digits for security purposes or for error detection. For example, an the digit may be appended to a -bit identification number to obtain the -digit invoice number of the form where the th bit, , is the check digit, computed as . If congruence modulo is used, then the check digit for an identification number . Thus the complete correct invoice number would appear as . If the invoice number were used instead and checked, an error would be detected, since .arrow_forwardDescribe the family of shift ciphers as a cryptosytem.arrow_forwardYou need to create a four digit code. You can use the digit 035. The first is it cannot be zero. And the digits are not allowed to repeat. How many such codes are possible?arrow_forward
- this is a multichoice question thank you so much!arrow_forwardSuppose that the captain of a ship that is in distress must send a total of eleven different signals in succession. The eleven signals com- prise of 4 blue light signals (B1, B2, B3 and B4), 4 purple light signals (P1, P2, P3 and P4) and 3 red light signals (R1, R2 and R3). He must send the signals one after another at 1 minute intervals. In how many different ways may the captain send the signals if the purple light signals are the first 4 signals and the red light signals are the last 3 signals? [Answer]arrow_forwardSuppose that the captain of a ship that is in distress must send a total of twelve different signals in succession. The twelve signals com- prise of 4 blue light signals (B1, B2, B3 and B4), 4 purple light signals (P1, P2, P3 and P4) and 4 red light signals (R1, R2, R3 and R4). He must send the signals one after another at 1 minute intervals. In how many different ways may the captain send the signals if signals of each of the same colour are to be sent consecutively? [Answer]arrow_forward
- To log onto a certain website, they require the customer to create a unique username. The username must start with three letters, which cannot be repeated, and then followed by two digits, which can be repeated. How many different usernames are possible? Enter in your exact answer in the space below.arrow_forwardWhat is the nearest neighbor algorithmarrow_forwardAnne has 4 friends and 5 coworkers. Each day in the year 2019, Anne talked to some number of friends: always at least one, but never all 4 in the same day. Each day in 2019, Anne also talked to some number of coworkers, but never more than 3 coworkers in one day. Prove that there were two days in 2019 in which Anne talked to the same set of friends and the same set of coworkers.arrow_forward
- Jesse has 4 friends and 5 coworkers. Each day in the year 2021, Jesse talked to some number of friends: always at least one, but never all 4 in the same day. Each day in 2021, Jesse also talked to some number of coworkers, but never more than 3 coworkers in one day. Prove that there were two days in 2021 in which Jesse talked to the same set of friends and the same set of coworkers.arrow_forwardShow that on a street with 101 houses where each house has a distinct street numberbetween 1 and 200, there must be two houses with consecutive numbers.arrow_forwardI need to create a password for my bank account. I would choose each of the first 5 characters of the password from the English alphabet, each of the next 3 characters from the set of digits {0,1,2,3,4,5,6,7,8,9}, and each of the last two characters from the set of special characters {!,#,$,%,@}. How many different passwords are possible? (Your calculator may give you an answer in Scientific Notation, ask if you need explanations about the notation.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Algebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY