DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
8th Edition
ISBN: 9781260521337
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 18SE
To determine
(a)
The number of differentfinite-state deterministic. automata
To determine
(b)
The number of different finite-statenon-deterministic automata
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q: Construct Pushdown Automata (PDA) for the language {a2nbn‒2} for n=2,3,4,… defined over ∑={a,b}.
Create a maths problem and model solution corresponding to the following question: “Given the following complete Sum of Products produce a Karnaugh map and find the minimal Sum of Products, then draw the corresponding logic circuit” Use 4 boolean values, and label them g, h, i and j. Your problem should make use of at least 7 products, one of which should be “g’h’ij”. . Ensure the minimal Sum of Products is different to the complete Sum of Products initially provided. You can find similar problems in Tutorials 3 and 4, but must not use any of them in constructing your own.
Let Z denote the set of integers. If m is a positive integer, we write Zm for the system of
"integers modulo m." Some authors write Z/mZ for that system.
For completeness, we include some definitions here. The system Zm can be represented as the
set {0, 1,..., m - 1} with operations (addition) and (multiplication) defined as follows.
If a, b are elements of {0, 1,..., m - 1}, define:
ab the element c of {0, 1,...,m - 1} such that a +b-c is an integer multiple of m.
a b = the element d of {0, 1,..., m - 1} such that ab -d is an integer multiple of m.
For example, 30 4 = 2 in Z5, 303= 1 in Z4, and -1 = 12 in Z₁3.
To simplify notations (at the expense of possible confusion), we abandon that new notation
and write a + b and ab for the operations in Zm, rather than writing ab and a b.
=
Let Q denote the system of rational numbers.
We write 4Z for the set of multiples of 4 in Z. Similarly for 4Z12.
Consider the following number systems:
Z, Q, 4Z, Z3, Z8, Z9, 4Z12, Z13.
One system may be…
Chapter 13 Solutions
DISCRETE MATHEMATICS+ITS APPL. (LL)-W/A
Ch. 13.1 - Exercises 1-3 refer to the grammar with start...Ch. 13.1 - Exercises 1-3 refer to the grammar with start...Ch. 13.1 - Prob. 3ECh. 13.1 - Let G=(V,T,S,P) be the phrase-structure grammar...Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Show that the grammar given in Example 5 generates...Ch. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Construct a derivation of 021222 in the grammar...Ch. 13.1 - Show that the grammar given in Example 7 generates...Ch. 13.1 - s13. Find a phrase-structure grammar for each of...Ch. 13.1 - Find a phrase-structure grammar for each of these...Ch. 13.1 - Find a phrase-structure grammar for each of these...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Construct phrase-structure grammars to generate...Ch. 13.1 - Prob. 19ECh. 13.1 - A palindrome is a string that reads the same...Ch. 13.1 - Let G1 and G2 be context-free grammars, generating...Ch. 13.1 - Prob. 22ECh. 13.1 - Construct derivation trees for the sentences in...Ch. 13.1 - Let G be the grammar with V={a,b,c,S};T={a,b,c} ;...Ch. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - a) Explain what the productions are in a grammar...Ch. 13.1 - Prob. 29ECh. 13.1 - a) Construct a phrasestructure grammar for the set...Ch. 13.1 - Give production rules in Backus-Naur form for an...Ch. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Prob. 38ECh. 13.1 - Prob. 39ECh. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - Let G be a grammar and let R be the relation...Ch. 13.2 - Draw the state diagrams for the finite-state...Ch. 13.2 - Give the state tables for the finite-state machine...Ch. 13.2 - Find the output generated from the input string...Ch. 13.2 - Find the output generated from the input string...Ch. 13.2 - Find the output for each of these input strings...Ch. 13.2 - Find the output for each of these input strings...Ch. 13.2 - Construct a finite-state machine that models an...Ch. 13.2 - Prob. 8ECh. 13.2 - Construct a finite-state machine that delays an...Ch. 13.2 - Construct a finite-state machine that changes...Ch. 13.2 - Construct a finite-state machine for the log-on...Ch. 13.2 - Construct a finite-state machine for lock that...Ch. 13.2 - Construct a finite-state machine for a toll...Ch. 13.2 - Construct a finite-state machine for entering a...Ch. 13.2 - Construct a finite-state machine for a restricted...Ch. 13.2 - Construct a finite-state machine that gives an...Ch. 13.2 - Prob. 17ECh. 13.2 - Construct a finite-state machine that determines...Ch. 13.2 - Construct a finite-state machine that determines...Ch. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Find the output string generated by the Moore...Ch. 13.2 - Prob. 23ECh. 13.2 - Construct a Moore machine that gives an output of...Ch. 13.2 - Prob. 25ECh. 13.3 - Prob. 1ECh. 13.3 - 2. Show that if A is a set of strings, then.
Ch. 13.3 - Find all pairs of sets of strings A and B for...Ch. 13.3 - Show that these equalities hold. a) {}*={} b)...Ch. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Determine whether the string 01001 is in each of...Ch. 13.3 - Determine whether each of these strings is...Ch. 13.3 - Determine whether each of these strings is...Ch. 13.3 - Determine whether all the strings in each of these...Ch. 13.3 - Show that if M=(S,I,f,so,F) is a deterministic...Ch. 13.3 - Given a finite-state automaton M=(S,I,f,so,F) ,...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - In Exercises 16—22 find the language recognized by...Ch. 13.3 - Prob. 22ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 27ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 29ECh. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Construct a deterministic finite-state automaton...Ch. 13.3 - Prob. 33ECh. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Use Exercise 39 finite-state automata constructed...Ch. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.3 - Prob. 44ECh. 13.3 - Prob. 45ECh. 13.3 - In Exercises 43-49 find the language recognized by...Ch. 13.3 - Prob. 47ECh. 13.3 - In Exercises 43-49 find the language recognized by...Ch. 13.3 - Prob. 49ECh. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Prob. 51ECh. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a deterministic finite-state automaton that...Ch. 13.3 - Find a nondeterministic finite-state automaton...Ch. 13.3 - Prob. 57ECh. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Prob. 60ECh. 13.3 - Prob. 61ECh. 13.3 - Prob. 62ECh. 13.4 - Describe in words the strings in each of these...Ch. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Express each of these sets using a regular...Ch. 13.4 - Construct deterministic finite-state automata that...Ch. 13.4 - Construct nondeterministic finite-state automata...Ch. 13.4 - Construct nondeterministic finite-state automata...Ch. 13.4 - Show that if A is a regular set, then AR, the set...Ch. 13.4 - Using the construction described in the proof of...Ch. 13.4 - Using the construction described in the proof of...Ch. 13.4 - Construct a nondeterministic finite-state...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - In Exercises 15-17 conflict a regular grammar...Ch. 13.4 - Show that the finite-state automaton constructed...Ch. 13.4 - Show that the regular grammar constructed from a...Ch. 13.4 - Show that every nondeterministic finite-state...Ch. 13.4 - Let M=(S,I,f,s0,F) be a deterministic finite-state...Ch. 13.4 - One important technique used to prove that certain...Ch. 13.4 - Show that the set 02n1nn=0,1,2,... is not regular...Ch. 13.4 - Show that the set {1n2n=0,1,2,...} is not regular...Ch. 13.4 - Show that the set of palindromes over {0, 1} is...Ch. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Use Exercise 29 to show that the language...Ch. 13.5 - Let T be the Turing machine defined by the...Ch. 13.5 - Let T be the Turing machine defined by the...Ch. 13.5 - What does the Turing machine defined by the...Ch. 13.5 - What does the Turing machine described by the...Ch. 13.5 - What does the Turing machine described by the...Ch. 13.5 - Construct a Turing machine with tape 0, 1, and B...Ch. 13.5 - Construct a Turning machine with tape symbols 0,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine with tape symbols 0, 1,...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Show at each step the contents of the tape of the...Ch. 13.5 - Explain why the Turing machine in Example 3...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that recognizes the set...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turing machine that computes the...Ch. 13.5 - Construct a Turning machine that computes the...Ch. 13.5 - Prob. 27ECh. 13.5 - Prob. 28ECh. 13.5 - Which of the following problems is a decision...Ch. 13.5 - Which of the following problems is a decision...Ch. 13.5 - Prob. 31ECh. 13.5 - Show that the function B(n) cannot be computed by...Ch. 13 - a) Define a phrase-structure grammar. b) What does...Ch. 13 - a) What is the language generated by a...Ch. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - a) What is a finite-state machine? b) Show how a...Ch. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - a) Define a nondeterministic finite-state...Ch. 13 - a) Define the set of regular expressions over a...Ch. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Describe how Turing machines are used to recognize...Ch. 13 - Prob. 18RQCh. 13 - Prob. 19RQCh. 13 - Prob. 1SECh. 13 - Prob. 2SECh. 13 - Prob. 3SECh. 13 - Prob. 4SECh. 13 - Prob. 5SECh. 13 - Prob. 6SECh. 13 - Prob. 7SECh. 13 - Prob. 8SECh. 13 - Prob. 9SECh. 13 - Prob. 10SECh. 13 - Prob. 11SECh. 13 - Prob. 12SECh. 13 - Prob. 13SECh. 13 - Construct a finite-state machine with output that...Ch. 13 - Construct a finite-state machine with output that...Ch. 13 - Prob. 16SECh. 13 - Prob. 17SECh. 13 - Prob. 18SECh. 13 - Construct a deterministic finite-state automaton...Ch. 13 - Prob. 20SECh. 13 - Prob. 21SECh. 13 - Prob. 22SECh. 13 - Prob. 23SECh. 13 - Prob. 24SECh. 13 - Prob. 25SECh. 13 - Show that {02nnN} is not regular. You may use the...Ch. 13 - Prob. 27SECh. 13 - Prob. 28SECh. 13 - Construct a Turing machine that computes the...Ch. 13 - Prob. 30SECh. 13 - Prob. 1CPCh. 13 - Prob. 2CPCh. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - Given the state table of a Moore machine and an...Ch. 13 - Given the state table of a Mealy machine and an...Ch. 13 - Given the state table of a deterministic...Ch. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CPCh. 13 - Given a regular grammar, construct a finite-state...Ch. 13 - Given a finite-state automaton, construct a...Ch. 13 - Prob. 13CPCh. 13 - Solve the busy beaver problem for two states by...Ch. 13 - Prob. 2CAECh. 13 - Prob. 3CAECh. 13 - Prob. 4CAECh. 13 - Prob. 5CAECh. 13 - Prob. 1WPCh. 13 - Describe the Backus-Naur form (and extended...Ch. 13 - Explain how finite-state machines are used by...Ch. 13 - Explain how finite-state machines are used in the...Ch. 13 - Explain how finite-state machines are used in...Ch. 13 - Compare the use of Moore machines versus Mealy...Ch. 13 - Explain the concept of minimizing finite-state...Ch. 13 - Give the definition of cellular automata, Explain...Ch. 13 - Define a pushdown automaton. Explain how pushdown...Ch. 13 - Define a linear-bounded automaton. Explain how...Ch. 13 - Prob. 11WPCh. 13 - Prob. 12WPCh. 13 - Prob. 13WPCh. 13 - Show that a Turing machine can simulate any action...Ch. 13 - Prob. 15WPCh. 13 - Describe the basic concepts of the lambda-calculus...Ch. 13 - Show that a Turing machine as defined in this...Ch. 13 - Prob. 18WP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Exercises 7. Express each permutation in Exercise as a product of transpositions. 1. Express each permutation as a product of disjoint cycles and find the orbits of each permutation. a. b. c. d. e. f. g. h.arrow_forwardFind the order of each permutation in Exercise 1. Express each permutation as a product of disjoint cycles and find the orbits of each permutation. a. [ 1234545312 ] b. [ 1234513254 ] c. [ 1234541352 ] d. [ 1234535241 ] e. [ 12345673456127 ] f. [ 12345675137264 ] g. [ 1234513452 ][ 1234532415 ] h. [ 1234523415 ][ 1234513542 ]arrow_forwardDesign the minimum-state DFA that accepts all and only the strings of 0's and 1's that have 110 as a substring. To verify that you have designed the correct automaton, we will ask you to identify the true statement in a list of choices. These choices will involve: The number of loops (transitions from a state to itself). The number of transitions into a state (including loops) on input 1. The number of transitions into a state (including loops) on input 0. Count the number of transitions into each of your states ("in-transitions") on input 1 and also on input 0. Count the number of loops on input 1 and on input 0. Then, find the true statement in the following list. a) There is one state that has two in-transitions on input 0. b) There is one state that has one in-transition on input 0. c) There are two states that have one in-transition on input 0. d) There are two loops on input 0 and two loops on input 1.arrow_forward
- Design the minimum-state DFA that accepts all and only the strings of 0's and 1's that have 110 as a substring. To verify that you have designed the correct automaton, we will ask you to identify the true statement in a list of choices. These choices will involve: The number of loops (transitions from a state to itself). The number of transitions into a state (including loops) on input 1. The number of transitions into a state (including loops) on input 0. Count the number of transitions into each of your states ("in-transitions") on input 1 and also on input 0. Count the number of loops on input 1 and on input 0. Then, find the true statement in the following list. a) There is one state that has two in-transitions on input 0. b) There is one state that has one in-transition on input 0. c) There are two states that have one in-transition on input 0. d) There are two loops on input 0 and two loops on input 1. it can only be one of these…arrow_forwardA single card is drawn randomly (with replacement) from 52-card deck. Let A denotes that the card is red; B denotes the card is a face card, and C denotes that it is King (K). a) Find P (A), P (B) , P (C) b) P (A|B), and P(C|B) means conditional c) Prove the dependency/independency of (A & B) and ( B & C) Note: There are 12 face cards, 4 kings, 26 red cards and 26 black cardsarrow_forwardProvide non-deterministic finite automata accepting the following languages over the alphabet Σ = {a,b}. Note: For w ∈ Σ∗,σ ∈ Σ, we use nσ(w) to mean the number of letters σ in w. 1. L1 = {w ∈ Σ∗ : w contains the substring ababa} 2. L2 = {w ∈ Σ∗ : na(w) mod 2 = 1 or nb(w) mod 3 = 2} 3. L3 = {w ∈ Σ∗ : w starts and ends with the same letter} A proof of correctness is not required, but you must use non-determinism.arrow_forward
- A is an ordered (n + 1)-tuple (S,*1,*2*3*4,...*n), where S is a nonempty set and *; is a binary operation on S for i = 1,2,3,..., n. The set S is called the underlying set of the system.arrow_forwardWhen you simply specify which elements of a set you want to choose, without any chances involved, you create a deterministic sample .is it true or false . explain in 2 to 3 linesarrow_forwardConsider the following language over the alphabet Σ = {a, b} L = {w : nb(w) is even, na(w) is odd, and w does not contain the substring ba} 1. Design the minimal deterministic finite automata which recognizes L. You do not need to prove correctness nor minimality. 2. Provide regular expressions for each of the equivalence classes of ≡L. [Hint: Use your answer from 1. A conversion algorithm is not necessary.]arrow_forward
- 1. Design the minimum-state DFA that accepts all and only the strings of 0's and 1's that end in 010. To verify that you have designed the correct automaton, we will ask you to identify the true statement in a list of choices. These choices will involve: The number of loops (transitions from a state to itself). The number of transitions into a state (including loops) on input 1. The number of transitions into a state (including loops) on input 0. Count the number of transitions into each of your states ("in-transitions") on input 1 and also on input 0. Count the number of loops on input 1 and on input 0. Then, find the true statement in the following list. a) There are two states that have one in-transition on input 1. b) There are three states that have one in-transition on input 1. c) There are two states that have no in-transitions on input 0. d) There is one state that has one in-transition on input 1.arrow_forwardMake a logic circuit of the following Boolean Function. • F(x, y) = xy + x • F(x, y, z) = xz + xyarrow_forward2. a) b) c) Let M be the pushdown automata (PDA) defined as: M = ({90, 91, 92}, {a, b, c}, {A}, 8, 90, {92}) 8: 8(qo, a, λ) = {[qo, A]}; 8(9₁, A, λ) = {[92, ^]}; 8(qo, b, A) = {[9₁, ^]}; 8(92, C, N) = {[92, ^]}. 8(9₁, b, A) = {[91, ^]}; Give the state diagram for the PDA M₁. Trace computations of strings aabbc, abbc in M. Give a set-theoretic definition of the language accepted by M.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY