Big Java, Binder Ready Version: Early Objects
Big Java, Binder Ready Version: Early Objects
6th Edition
ISBN: 9781119056447
Author: Cay S. Horstmann
Publisher: WILEY
Question
Book Icon
Chapter 13, Problem 9PP
Program Plan Intro

Evaluation of Expression

Program plan:

Filename: “Constant.java”

This program file is used to define a class “Constant”. In the code,

  • Define a class “Constant”.
    • Define the constructor “Constant()”.
      • Set the value of “number”.
    • Define the method “value()”.
      • Return the value of “number”.

Filename: “Expression.java”

This program file is used to define an interface “Expression”. In the code,

  • Define an interface “Expression”.
    • Define the method “value()”.

Filename: “Difference.java”

This program file is used to define a class “Difference”. In the code,

  • Define a class “Difference”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Difference ()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the difference of two expression.
      • Return the difference.

Filename: “Product.java”

This program file is used to define a class “Product”. In the code,

  • Define a class “Product”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Product()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the product of two expression.
      • Return the product.

Filename: “Quotient.java”

This program file is used to define a class “Quotient”. In the code,

  • Define a class “Quotient”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Quotient()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the quotient of two expression.
      • Return the quotient.

Filename: “Sum.java”

This program file is used to define a class “Sum”. In the code,

  • Define a class “Sum”.
    • Define the class members “leftOp” and “rightOp”.
    • Define the constructor “Sum()”.
      • Set the value of class members.
    • Define the method “value()” to calculate the sum of two expression.
      • Return the sum.

Filename: “ExpressionTokenizer.java”

This program file is used to define a class “ExpressionTokenizer”. In the code,

  • Define a class “ExpressionTokenizer”.
    • Define the class members “input”, “start” and “end”.
    • Define the constructor “ExpressionTokenizer()”.
      • Set the values of “input”, “start”, “end” and find the first token using “nextToken()”.
    • Define the method “peekToken()”.
      • If the “start” is greater than “input.length()”.
        • Return “null”.
          • Else,
            • Return the substring.
    • Define the method “nextToken()”.
      • Call the method “peekToken()” to get the token.
      • Assign the value of “end” to “start”.
      • If the value of “start” is greater than or equal to length of the input,
        • Return the value of “r”.
          • If the character at “start” is a digit,
            • Set “end” equal to “start+1”,
            • Iterate a “while” loop,
              • Increment the “end” by 1.
                • Set the value of “end”.
          • Return the value of “r”.

Filename: “Evaluator.java”

This program file is used to define a class “Evaluator”. In the code,

  • Define a class “Evaluator”.
    • Define the class members “tokenizer” which is an object of class “ExpressionTokenizer”.
    • Define the constructor “Evaluator()”.
      • Define “tokenizer”.
    • Define the method “getExpressionValue()”.
      • Get terms using “getTermValue()” to “value”.
      • Define a Boolean value “done” and assign “false” to it.
      • While “true”,
        • Call “peekToken()” to get the token and assign to “next”.
        • If the value of “next” is “+” or “-”.
          • Get the next token using “nextToken()”.
          • Get next term to “value2”.
          • If the “next” is “+”,
            • Calculate the sum of “value” and “value2” and assign to “value”.
          • Else,
            • Calculate the difference of “value” and “value2” and assign to “value”.
        • Else,
          • Set “done” equal to “true”.
              • Return “value”.
    • Define the method “getTermValue()”.
      • Get factors using “getFactorValue()” to “value”.
      • Define a Boolean value “done” and assign “false” to it.
      • While “true”,
        • Call “peekToken()” to get the token and assign to “next”.
        • If the value of “next” is “*” or “/”.
          • Get the next token using “nextToken()”.
          • Get next factor to “value2”.
          • If the “next” is “*”,
            • Calculate the Product of “value” and “value2” and assign to “value”.
          • Else,
            • Calculate the Quotient of “value” and “value2” and assign to “value”.
        • Else,
          • Set “done” equal to “true”.
              • Return “value”.
    • Define the method “getFactorValue()”.
      • Declare “value”.
      • Call “peekToken()” to get the token and assign to “next”.
      • If the value of “next” is “(”.
        • Get the next token using “nextToken()”.
        • Discard “(” using “nextToken()”.
        • Get next expression to “value”.
        • Discard “)” using “nextToken()”.
              • Else,
                • Get the next token using “nextToken Get new constant to “done”.
              • Return “value”.

Filename: “ExpressionCalculator.java”

This program file is used to define a class “ExpressionCalculator”. In the code,

  • Define a class “ExpressionCalculator”.
    • Define the method “main()”.
      • Define the object “in” of “Scanner”.
      • Prompt the user to enter the expression.
      • Read the lines using “nextLine()”.
      • Evaluate the expression “input”.
      • Get the value of expression “input”.
      • Print the value of expression “input.”

Blurred answer
Students have asked these similar questions
What are the major threats of using the internet? How do you use it? How do children use it? How canwe secure it? Provide four references with your answer. Two of the refernces can be from an article and the other two from websites.
Assume that a string of name & surname is saved in S. The alphabetical characters in S can be in lowercase and/or uppercase letters. Name and surname are assumed to be separated by a space character and the string ends with a full stop "." character. Write an assembly language program that will copy the name to NAME in lowercase and the surname to SNAME in uppercase letters. Assume that name and/or surname cannot exceed 20 characters. The program should be general and work with every possible string with name & surname. However, you can consider the data segment definition given below in your program. .DATA S DB 'Mahmoud Obaid." NAME DB 20 DUP(?) SNAME DB 20 DUP(?) Hint: Uppercase characters are ordered between 'A' (41H) and 'Z' (5AH) and lowercase characters are ordered between 'a' (61H) and 'z' (7AH) in the in the ASCII Code table. For lowercase letters, bit 5 (d5) of the ASCII code is 1 where for uppercase letters it is 0. For example, Letter 'h' Binary ASCII 01101000 68H 'H'…
What did you find most interesting or surprising about the scientist Lavoiser?

Chapter 13 Solutions

Big Java, Binder Ready Version: Early Objects

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Text book image
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Text book image
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
Text book image
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Text book image
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education