Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 8OQ
To determine
The correct statement about the comparison of sound from Sire A with that of siren B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two sirens A and B are sounding so that the frequency from A is twice the frequencyfrom B. Compared with the speed of sound from A, is the speed of sound from B (a)twice as fast, (b) half as fast, (c) four times as fast, (d) one-fourth as fast, or (e) thesame?
A cyclist is using a loudspeaker to measure her speed. She cycles
directly towards the loudspeaker which emits a sound with a constant
frequency 261 Hz. The cyclist measures the frequency to be 269 Hz.
You should assume that the speed of sound in air is 335 m s-¹.
(a) Calculate the speed of the cyclist.
(b) Describe briefly what the cyclist will hear as she passes the
loudspeaker.
Wei is standing on a platform when an approaching XPT train sounds its horn. The frequency of the horn is 500Hz and the train is travelling at 126km h- 1. What is the frequency of the horn as heard by Wei? (Assume the speed of sound in air is 340ms- 1.)
Chapter 13 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 13.1 - (i) In a long line of people waiting to buy...Ch. 13.2 - Prob. 13.2QQCh. 13.2 - The amplitude of a wave is doubled, with no other...Ch. 13.3 - Suppose you create a pulse by moving the free end...Ch. 13.5 - Prob. 13.5QQCh. 13.7 - Consider detectors of water waves at three...Ch. 13.7 - Prob. 13.7QQCh. 13 - Prob. 1OQCh. 13 - Prob. 2OQCh. 13 - Rank the waves represented by the following...
Ch. 13 - Prob. 4OQCh. 13 - When all the strings on a guitar (Fig. OQ13.5) are...Ch. 13 - By what factor would you have to multiply the...Ch. 13 - A sound wave can be characterized as (a) a...Ch. 13 - Prob. 8OQCh. 13 - Prob. 9OQCh. 13 - A source vibrating at constant frequency generates...Ch. 13 - A source of sound vibrates with constant...Ch. 13 - Prob. 12OQCh. 13 - Prob. 13OQCh. 13 - Prob. 14OQCh. 13 - As you travel down the highway in your car, an...Ch. 13 - Prob. 16OQCh. 13 - Suppose an observer and a source of sound are both...Ch. 13 - Prob. 1CQCh. 13 - Prob. 2CQCh. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - When a pulse travels on a taut string, does it...Ch. 13 - Prob. 6CQCh. 13 - Prob. 7CQCh. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - How can an object move with respect to an observer...Ch. 13 - Prob. 13CQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - The string shown in Figure P13.5 is driven at a...Ch. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - A transverse wave on a string is described by the...Ch. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - A transverse sinusoidal wave on a string has a...Ch. 13 - A steel wire of length 30.0 m and a copper wire of...Ch. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Review. A light string with a mass per unit length...Ch. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - A series of pulses, each of amplitude 0.150 m, are...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - A taut rope has a mass of 0.180 kg and a length of...Ch. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - Write an expression that describes the pressure...Ch. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - A sound wave in air has a pressure amplitude equal...Ch. 13 - A rescue plane flies horizontally at a constant...Ch. 13 - A driver travels northbound on a highway at a...Ch. 13 - Prob. 40PCh. 13 - Prob. 41PCh. 13 - Prob. 42PCh. 13 - Prob. 43PCh. 13 - Prob. 44PCh. 13 - Review. A tuning fork vibrating at 512 Hz falls...Ch. 13 - Submarine A travels horizontally at 11.0 m/s...Ch. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Review. A block of mass M, supported by a string,...Ch. 13 - Prob. 51PCh. 13 - Review. A block of mass M hangs from a rubber...Ch. 13 - Prob. 53PCh. 13 - The wave is a particular type of pulse that can...Ch. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Prob. 62PCh. 13 - Prob. 63PCh. 13 - Prob. 64PCh. 13 - Prob. 65PCh. 13 - Prob. 66PCh. 13 - Prob. 67PCh. 13 - A sound wave moves down a cylinder as in Active...Ch. 13 - A string on a musical instrument is held under...Ch. 13 - A train whistle (f = 400 Hz) sounds higher or...Ch. 13 - The Doppler equation presented in the text is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardA cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forward
- As you travel down the highway in your car, an ambulance approaches you from the rear at a high speed (Fig. OQ13.15) sounding its siren at a frequency of 500 Hz. Which statement is correct? (a) You hear a frequency less than 500 Hz. (b) You hear a frequency equal to 500 Hz. (c) You hear a frequency greater than 500 Hz. (d) You hear a frequency greater than 500 Hz, whereas the ambulance driver hears a frequency lower than 500 Hz. (e) You hear a frequency less than 500 Hz, whereas the ambulance driver hears a frequency of 500 Hz. Figure OQ13.15arrow_forwardA siren mounted 011 the roof of a firehouse emits sound at a frequency of 900 Hz. A steady wind is blowing with a speed of 15.0 m/s. Taking the speed of sound in calm air to be 343 m/s. find the wavelength of the sound (a) upwind of the siren and (b) downwind of the siren. Firefighters are approaching the siren from various directions at 15.0 m/s. What frequency does a firefighter hear (c) if she is approaching from an upwind position so that site is moving in the direction in which the wind is blowing and (d) if she is approaching from a downwind position and moving against the wind?arrow_forwardThe equation of a sound wave in air is given by p - (001 N/m ) sin[(1000 s )t- (30 m)x) (a) Find the frequency, wavelength and the speed of sound wave in air. (b) If the equilibrium pressure of air is 1.0 x 10° N/m?, what are the maximum and minimum pressures at a point as the wave passes through that point?arrow_forward
- A guitar string vibrates at a frequency of 330 Hz with wavelength 1.40 m. The frequency and wavelength of this soundin air (20°C) as it reaches our ears is(a) same frequency, same wavelength.(b) higher frequency, same wavelength.(c) lower frequency, same wavelength.(d) same frequency, longer wavelength.(e) same frequency, shorter wavelengtharrow_forwardA French and an American submarine sail directly towards each other during maneuvers in the waters of the North Atlantic. The French sails at a speed of 50 km.h-1, the American speed at 70 km.h-1.The French transmit a sonar signal (sound wave in the water) with a frequency of 1000 Hz at speed at 5470 km.h-1. (a) What frequency of the signal will the Americans receive? (b) What frequency of the signal will received by the French eflected back from the American submarine?arrow_forwardA train, standing at the outer signal of a railway station blows a whistle of frequency 800 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of 20 m/s (b) recedes from the platform with a speed of 20 m/s? (ii) What is the speed of sound in each case ? The speed of sound in still air can be taken as 340 m/s.arrow_forward
- A bird flying directly toward a stationary bird watcher and emits a frequency of 1100 Hz. The bird watcher, however, hears a frequency of 1150 Hz. What is the speed of the bird, expressed as a percentage of the speed sound?arrow_forwardThe frequency of whistle by a moving train and the frequency heard by a (c) stationary observer are 520 Hz and 460 Hz respectively. If the speed of sound in the air is 343 m s', calculate the speed of the train.arrow_forwardA French and an American submarine sail directly towards each other during maneuvers. The French sails at a speed of 50 km.h-1, the American speed at 70 km.h-1.The French transmit a sonar signal (sound wave in the water) with a frequency of 1000 Hz at speed of 5470 km.h-1. (a) What frequency of the signal will the Americans receive? (b) What frequency of the signal will received by the French reflected back from the American submarine?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning