EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 8CP
To determine
Evaluation of the conditions of upstream and downstream from the jump in open channel hydraulic jump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A trapezoidal channel with a bottom width of 6 m, free surface width of 12 m, and flow depth of 1.6 m discharges water at a rate of 80 m3/s. If the surfaces of the channel are lined with asphalt (n = 0.016), determine the elevation drop of the channel per kilometer.
The flow rate of water flowing in a 5-m-wide channel is to be measured with a sharp-crested triangular weir 0.5 m above the channel bottom with a notch angle of 80°. If the flow depth upstream from the weir is 1.5 m, determine the flow rate of water through the channel. Take the weir discharge coefficient to be 0.60.
Water discharges into a rectangular horizontal channel from a sluice gate and undergoes a hydraulic jump. The flow depth and velocity before the jump are 1.25 m and 8.5 m/s, respectively. The percentage available head loss due to the hydraulic jump is (a) 4.7% (b) 7.2% (c) 8.8% (d ) 13.5% (e) 16.3%
Chapter 13 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 13 - What is the driving force for flow in an open...Ch. 13 - How does open-channel flow differ from internal...Ch. 13 - Prob. 3CPCh. 13 - Prob. 4CPCh. 13 - What is normal depth? Explain how it is...Ch. 13 - How does uniform flow differ from nonuniform flow...Ch. 13 - Prob. 7CPCh. 13 - Prob. 8CPCh. 13 - Prob. 9CPCh. 13 - Prob. 10CP
Ch. 13 - Prob. 11CPCh. 13 - Water at 20°C flows in a partially full...Ch. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Water at 10°C flows in a 3-rn-diameter circular...Ch. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20CPCh. 13 - Prob. 21CPCh. 13 - Prob. 22CPCh. 13 - Prob. 23CPCh. 13 - Prob. 24CPCh. 13 - Prob. 25CPCh. 13 - Consider steady supercritical flow of water...Ch. 13 - During steady and uniform flow through an open...Ch. 13 - How is the friction slope defined? Under what...Ch. 13 - Prob. 29PCh. 13 - Prob. 30EPCh. 13 - Prob. 31EPCh. 13 - Prob. 32PCh. 13 - Prob. 33PCh. 13 - Prob. 34PCh. 13 - Prob. 35PCh. 13 - Prob. 36PCh. 13 - Prob. 37PCh. 13 - Prob. 38CPCh. 13 - Which is the best hydraulic cross section for an...Ch. 13 - Prob. 40CPCh. 13 - Prob. 41CPCh. 13 - Prob. 42CPCh. 13 - Prob. 43CPCh. 13 - Prob. 44CPCh. 13 - Prob. 45PCh. 13 - A 3-ft-diameter semicircular channel made of...Ch. 13 - A trapezoidal channel with a bottom width of 6 m....Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Water is to be transported n a cast iron...Ch. 13 - Prob. 52PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - Prob. 55PCh. 13 - Prob. 56PCh. 13 - Prob. 58EPCh. 13 - Prob. 59EPCh. 13 - Prob. 60PCh. 13 - Repeat Prob. 13-60 for a weedy excavated earth...Ch. 13 - Prob. 62PCh. 13 - During uniform flow n open channels, the flow...Ch. 13 - Prob. 64PCh. 13 - Is it possible for subcritical flow to undergo a...Ch. 13 - How does nonuniform or varied flow differ from...Ch. 13 - Prob. 67CPCh. 13 - Consider steady flow of water; an upward-sloped...Ch. 13 - How does gradually varied flow (GVF) differ from...Ch. 13 - Why is the hydraulic jump sometimes used to...Ch. 13 - Consider steady flow of water in a horizontal...Ch. 13 - Consider steady flow of water in a downward-sloped...Ch. 13 - Prob. 73CPCh. 13 - Prob. 74CPCh. 13 - Water is flowing in a 90° V-shaped cast iron...Ch. 13 - Prob. 76PCh. 13 - Consider the flow of water through a l2-ft-wde...Ch. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - Prob. 80PCh. 13 - Prob. 81EPCh. 13 - Water flowing in a wide horizontal channel at a...Ch. 13 - Water discharging into a 9-m-wide rectangular...Ch. 13 - During a hydraulic jump in a wide channel, the...Ch. 13 - Prob. 92PCh. 13 - Prob. 93CPCh. 13 - Prob. 94CPCh. 13 - Prob. 95CPCh. 13 - Prob. 96CPCh. 13 - Prob. 97CPCh. 13 - Prob. 98CPCh. 13 - Consider uniform water flow in a wide rectangular...Ch. 13 - Prob. 100PCh. 13 - Prob. 101PCh. 13 - Prob. 102EPCh. 13 - Prob. 103PCh. 13 - Prob. 104PCh. 13 - Prob. 105PCh. 13 - Prob. 106EPCh. 13 - Prob. 107EPCh. 13 - Prob. 108PCh. 13 - Prob. 109PCh. 13 - Prob. 111PCh. 13 - Repeat Prob. 13-111 for an upstream flow depth of...Ch. 13 - Prob. 113PCh. 13 - Prob. 114PCh. 13 - Repeat Prob. 13-114 for an upstream flow depth of...Ch. 13 - Prob. 116PCh. 13 - Prob. 117PCh. 13 - Prob. 118PCh. 13 - Prob. 119PCh. 13 - Water flows in a canal at an average velocity of 6...Ch. 13 - Prob. 122PCh. 13 - A trapczoda1 channel with brick lining has a...Ch. 13 - Prob. 124PCh. 13 - A rectangular channel with a bottom width of 7 m...Ch. 13 - Prob. 126PCh. 13 - Prob. 128PCh. 13 - Prob. 129PCh. 13 - Consider o identical channels, one rectangular of...Ch. 13 - The flow rate of water in a 6-m-ide rectangular...Ch. 13 - Prob. 132EPCh. 13 - Prob. 133EPCh. 13 - Consider two identical 15-ft-wide rectangular...Ch. 13 - Prob. 138PCh. 13 - Prob. 139PCh. 13 - A sluice gate with free outflow is used to control...Ch. 13 - Prob. 141PCh. 13 - Prob. 142PCh. 13 - Repeat Prob. 13-142 for a velocity of 3.2 ms after...Ch. 13 - Water is discharged from a 5-rn-deep lake into a...Ch. 13 - Prob. 145PCh. 13 - Prob. 146PCh. 13 - Prob. 147PCh. 13 - Prob. 148PCh. 13 - Prob. 149PCh. 13 - Prob. 150PCh. 13 - Prob. 151PCh. 13 - Prob. 152PCh. 13 - Water f1ows in a rectangular open channel of width...Ch. 13 - Prob. 154PCh. 13 - Prob. 155PCh. 13 - Prob. 156PCh. 13 - Prob. 157PCh. 13 - Prob. 158PCh. 13 - Prob. 159PCh. 13 - Prob. 160PCh. 13 - Prob. 161PCh. 13 - Prob. 162PCh. 13 - Prob. 163PCh. 13 - Prob. 164PCh. 13 - Prob. 165PCh. 13 - Consider water flow in the range of 10 to 15 m3/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How does the pressure change along the free surface in an open-channel flow?arrow_forwardWater is to be transported in a finished-concrete rectangular channel with a bottom width of 1.2 m at a rate of 5 m3 /s. The channel bottom drops 1 m per 500 m length. The minimum height of the channel under uniform-flowconditions is(a) 1.9 m (b) 1.5 m (c) 1.2 m (d) 0.92 m (e) 0.60 marrow_forwardWater flows in a rectangular open channel of width 5 m at a rate of 7.5 m3/s. The critical depth for this flow is (a) 5 m (b) 2.5 m (c) 1.5 m (d) 0.96 m (e) 0.61 marrow_forward
- Water flows half-full through a hexagonal channel of bottom width 2 m at a rate of 30 m3/s. Determine (a) the average velocity and (b) whether the flow is subcritical and supercriticalarrow_forwardThe flow rate of water in a 5-m-wide horizontal open channel is being measured with a 0.60-m-high sharp-crested rectangular weir of equal width. If the water depth upstream is 1.5 m, determine the flow rate of waterarrow_forwardIs it possible for subcritical flow to undergo a hydraulic jump? Explain.arrow_forward
- Gradually varied flow of water in a wide rectangular channel with a per-unitwidth flow rate of 1 m3/s⋅m and a Manning coefficient of n = 0.02 is considered. The slope of the channel is 0.001, and at the location x = 0, the flow depth is measured to be 0.8 m. (a) Determine the normal and critical depths of the flow and classify the water surface profile, and (b) calculate the flow depth y at x = 1000 m by integrating the GVF equation numerically over the range 0 ≤ x ≤ 1000 m. Repeat part (b) to obtain the flow depths for different x values, and plot the surface profile.arrow_forwardWater is flowing uniformly in a finished-concrete channel of trapezoidal cross section with a bottom width of 0.8 m, trapezoid angle of 50°, and a bottom angle of 0.4°. If the flow depth is measured to be 0.52 m, determine the flow rate of water through the channel.arrow_forwardA 3-ft-diameter semicircular channel made of unfinished concrete is to transport water to a distance of 1 miuniformly. If the flow rate is to reach 90 ft3/s when the channel is full, determine the minimum elevation difference across the channel.arrow_forward
- Water is discharged from a 5-m-deep lake into a finished concrete channel with a bottom slope of 0.004 through a sluice gate with a 0.7-m-high opening at the bottom. Shortly after supercritical uniform-flow conditions are established, the water undergoes a hydraulic jump. Determine the flow depth,velocity, and Froude number after the jump. Disregard the bottom slope when analyzing the hydraulic jump.arrow_forwardWater is released from a 0.8-m-deep reservoir into a 4-m-wide open channel through a sluice gate with a 0.1-m-high opening at the channel bottom. The flow depth after all turbulence subsides is 0.5 m. The rate of discharge is(a) 0.92 m3/s (b) 0.79 m3/s (c) 0.66 m3/s(d) 0.47 m3/s (e) 0.34 m3/sarrow_forwardWater is to be transported at a rate of 10 m3/s in uniform flow in an open channel whose surfaces are asphalt lined. The bottom slope is 0.0015. Determine the dimensions of the best cross section if the shape of the channel is (a) circular of diameter D, (b) rectangular of bottom width b, and (c) trap e zoidal of bottom width b.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License