EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 73GP
Sunspot Observations Sunspots vary in number as a function of time, exhibiting an approximately 11-year cycle Galileo made the first European observations of sunspots in 1610, and daily observations were begun in Zurich in 1749. At the present time we are well into the 24th observed cycle. What is the frequency of the sunspot cycle? Give your answer in Hz.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Astronomers use a light-year to measure distance. A light-year is the distance light travels in one year. The speed of light is approximately 300,000 km/sec.a. How long is 1 light-year in kilometers?b. The nearest star (other than the sun) is Alpha Centauri. It is 4.34 light-years from Earth. How far is that in kilometers?c. How long will it take a rocket traveling 42,000 km/hr to reach Alpha Centauri?
B3
Washington, D.C., is located at about 750 W longitude and 380 N latitude. San Francisco is near 1270 W longitude and 380 N latitude. Estimate how many minutes later the Sun rises in San Francisco than inWashington, D. C. How far apart would you estimate these cities to be? Assume that the earth’s radius is 6400 km. One day has 1440 minutes and of course the earth rotates 360 degrees around its axis in one day
Chapter 13 Solutions
EBK PHYSICS
Ch. 13.1 - If the frequency of an oscillator is halved, by...Ch. 13.2 - Prob. 2EYUCh. 13.3 - An object moves with simple harmonic motion about...Ch. 13.4 - Rank the four massspring systems in Figure 13-15...Ch. 13.5 - The total mechanical energy of an ideal...Ch. 13.6 - Rank the four pendulum systems in Figure 13-25 in...Ch. 13.7 - The amplitude of a damped oscillation decreases...Ch. 13.8 - When you drive a pendulum at a frequency f1, you...Ch. 13 - A basketball player dribbles a ball with a steady...Ch. 13 - A person rides on a Ferris wheel that rotates with...
Ch. 13 - An air-track cart bounces back and forth between...Ch. 13 - If a mass m and a mass 2m oscillate on identical...Ch. 13 - An object oscillating with simple harmonic motion...Ch. 13 - The position of an object undergoing simple...Ch. 13 - The pendulum bob in Figure 13-18 leaks sand onto...Ch. 13 - A person in a rocking chair completes 12 cycles in...Ch. 13 - While fishing for catfish, a fisherman suddenly...Ch. 13 - If you dribble a basketball with a frequency of...Ch. 13 - You take your pulse and observe 74 heartbeats in a...Ch. 13 - BIO Slow-Motion Dragonfly A frame-by-frame...Ch. 13 - Predict/Calculate (a) Your heart beats with a...Ch. 13 - You rev your cars engine to 3300 rpm (rev/min)....Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - A position-versus-time plot for an object...Ch. 13 - A mass on a spring oscillates with simple harmonic...Ch. 13 - A mass oscillates on a spring with a period of...Ch. 13 - Predict/Calculate Molecular Oscillations An atom...Ch. 13 - A mass oscillates on a spring with a period T and...Ch. 13 - The position of a mass on a spring is given by x =...Ch. 13 - Predict/Calculate A mass attached to a spring...Ch. 13 - A lawn sprinkler oscillates with simple harmonic...Ch. 13 - A ball rolls on a circular track of radius 0.62 m...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - A child rocks back and forth on a porch swing with...Ch. 13 - Predict/Calculate A 30.0-g goldfinch lands on a...Ch. 13 - BIO Tuning Forks in Neurology Tuning forks are...Ch. 13 - A vibrating structural beam in a spacecraft can...Ch. 13 - A peg on a turntable moves with a constant...Ch. 13 - The pistons in an internal combustion engine...Ch. 13 - Vomit Comet NASA trains astronauts to deal with...Ch. 13 - A 0.84-kg air cart is attached to a spring and...Ch. 13 - Predict/Calculate A person rides on a mechanical...Ch. 13 - An object moves with simple harmonic motion of...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - Predict/Explain If a mass m is attached to a given...Ch. 13 - Predict/Explain An old car with worn-out shock...Ch. 13 - Predict/Explain The two blocks in Figure 13-34...Ch. 13 - A 0.49-kg mass attached to a spring undergoes...Ch. 13 - A freshly caught catfish is placed on a spring...Ch. 13 - System A consists of a mass m attached to a spring...Ch. 13 - Find the periods of block 1 and block 2 in Figure...Ch. 13 - When a 0.62-kg mass is attached to a vertical...Ch. 13 - A spring with a force constant of 82 N/m is...Ch. 13 - A bunch of grapes is placed in a spring scale at a...Ch. 13 - Two people with a combined mass of 125 kg hop into...Ch. 13 - A 0.95-kg mass attached to a vertical spring of...Ch. 13 - When a 0.184-kg mass is attached to a vertical...Ch. 13 - Predict/Calculate The springs of a 511-kg...Ch. 13 - Predict/Calculate If a mass m is attached to a...Ch. 13 - A 0.285-kg mass is attached to a spring with a...Ch. 13 - A 1.6-kg mass attached to a spring oscillates with...Ch. 13 - Predict/Calculate A 0.40-kg mass is attached to a...Ch. 13 - Prob. 51PCECh. 13 - BIO Astronaut Mass An astronaut uses a Body Mass...Ch. 13 - Predict/Calculate A 0.505-kg block slides on a...Ch. 13 - A 3.55-g bullet embeds itself in a 1.47-kg block,...Ch. 13 - Metronomes, such as the penguin shown in Figure...Ch. 13 - Predict/Explain A grandfather clock keeps correct...Ch. 13 - An observant fan at a baseball game notices that...Ch. 13 - A simple pendulum of length 2.3 m makes 5.0...Ch. 13 - United Nations Pendulum A large pendulum with a...Ch. 13 - Predict/Calculate If the pendulum in the previous...Ch. 13 - A Hula Hoop hangs from a peg. Find the period of...Ch. 13 - A fireman tosses his 0.98-kg hat onto a peg, where...Ch. 13 - Predict/Calculate Consider a meterstick that...Ch. 13 - On the construction site for a new skyscraper, a...Ch. 13 - BIO (a) Find the period of a childs leg as it...Ch. 13 - Suspended from the ceiling of an elevator is a...Ch. 13 - CE An object undergoes simple harmonic motion with...Ch. 13 - CE If the amplitude of a simple harmonic...Ch. 13 - CE A mass m is suspended from the ceiling of an...Ch. 13 - CE A pendulum of length L is suspended from the...Ch. 13 - A 1.3-kg mass is attached to a spring with a force...Ch. 13 - BIO Measuring an Astronauts Mass An astronaut uses...Ch. 13 - Sunspot Observations Sunspots vary in number as a...Ch. 13 - BIO Weighing a Bacterium Scientists are using...Ch. 13 - CE An object undergoing simple harmonic motion...Ch. 13 - The maximum speed of a 4.1-kg mass attached to a...Ch. 13 - The acceleration of a block attached to a spring...Ch. 13 - Helioseismology In 1962, physicists at Cal Tech...Ch. 13 - Predict/Calculate A 9.50-g bullet, moving...Ch. 13 - BIO Spiderweb Oscillations A 1.44-g spider...Ch. 13 - A service dog tag (Figure 13-40) is a circular...Ch. 13 - Calculate the ratio of the kinetic energy to the...Ch. 13 - A 0.340-kg mass slides on a frictionless floor...Ch. 13 - A shock absorber is designed to quickly damp out...Ch. 13 - Predict/Calculate Figure 13-41 shows a...Ch. 13 - Predict/Calculate A 3.2-kg mass on a spring...Ch. 13 - A 0.45-kg crow lands on a slender branch and bobs...Ch. 13 - A mass m is connected to the bottom of a vertical...Ch. 13 - Predict/Calculate Consider the pendulum shown in...Ch. 13 - An object undergoes simple harmonic motion of...Ch. 13 - A physical pendulum consists of a light rod of...Ch. 13 - Predict/Calculate A vertical hollow tube is...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - Predict/Calculate Referring to Example 13-5...Ch. 13 - Predict/Calculate Referring to Example 13-12...Ch. 13 - Predict/Calculate Referring to Example 13-12 (a)...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You and your mother travel from home to school to have your Covid-19 vaccination. From your house, you walk 400 meters East, then 300 meters North as shown in the map. Analyze the map and answer the questions that follow. 1. What was the total distance that you traveled from home to school? A. 250 meters B. 300 meters C. 400 meters D. 700 meters 2. What was your displacement upon reaching the vaccination site in school? A. 250 meters B. 250 meters Northeast C. 300 meters North D. 400 meters East 3. If you and your mother will walk on the same path to return home after the vaccination, what will happen to your distance and displacement? A. The distance and displacement will become zero. B. The distance and the displacement will become equal. C. The distance will double, and the displacement will become zero. D. The distance will become zero, and the displacement will double.arrow_forwardIn a nil converted to energy. How many joules (J) of energy are produced? 1. Read and Understand What information are you given? Mass= m = 0.15 kg Speed of light = c = 300,000,000 m/s=3x108 m/s 2. Plan and Solve What unknown are you trying to calculate? The amount of energy produced = E = ? What formula contains the given quantities and the unknown? E = mc² Replace each variable with its known variable and known value. E = (0.15 kg)(3.00 × 108 m/s)² E = 1.35 x 10¹6 kg.m²/s2 = 1.4 x 10¹6 J 3. Look Back and Check Is your answer reasonable? Yes, the calculated number is quite large compared to the mass, and the units indicate energy. Math Practice How many 3. A nuclear reactor produces 2.75 x 1016 joules of energy. kilograms of uranium-235 are completely converted to energy?arrow_forwardWhich of the following is not equal to the unit of energy? a.) J b.) Nm c.) kg*m^2/s^2 d.) W/s In the derived equation for orbital period in the Law of Harmony, which of the following physical quantities is not included? a.) п (pi) b.) G c.) r d.) Narrow_forward
- Humanity's Energy Needs: Humankind's total annual energy need is approximately 4 x 10^20 J. a) What is this in Watts? b) The solar energy reaching the Earth is ~340 W/m^2. If we could collect 100% of the energy hitting 1/20th (5%) of the Earth's surface, and Earth's surface is 5x10^14 m^2, show that we could collect enough energy to meet all of humankind's annual energy needs in less than 12 hours. c) Alternatively, if we wanted to provide all of humankind's energy needs with wind power, how many 100 MW wind farms are needed? (Assume constant average energy use and no efficiency losses.)arrow_forwardProblem 1. “Hot Jupiter” Exoplanets A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”. The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days? Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law.arrow_forwardImagine there is a large star that produces 2.5 x 1030 Watts of power. If there is a planet orbiting this star from 500 million kms away, what would be the solar constant of that planet? a. 7,900W/m2 b. 52,000 W/m2 c. 250,000 W/m2 d. 800,000 W/m2arrow_forward
- PI One way that astronomers detect planets outside of our solar system (called exoplanets) is commonly referred to as the radial velocity method. This relies on the to cause shifts in the spectral lines of stars as the stars perform tiny orbits around the center of mass of the host star and its orbiting planets. Those tiny orbits cause the stars to periodically (and therefore predictably) move closer to and further away from our solar system. Luckily, this method only relies on the motion of the star; its physical distance from us does not impact the resulting shifts. VO 10:04 hp Cc %24 % & backspace %23 6 7 3 y u e k a S barrow_forwardWhat evidence supports the predicted existence of gravitational waves? A. Gravitational waves are frequently and easily detected by large telescopes. B. Gravitational waves have been detected by observing their effect on large masses suspended on Earth. C. The orbit of a star system consisting of two neutron stars is slowly decaying, suggesting that energy is being carried away by gravitational waves. D. The energy generated by gravitational waves from the Sun can be seen as it is absorbed by Jupiter. E. Photographs of spacetime show the gravitational waves as ripples that are clearly visible.arrow_forwardWhile working with part of a research team you discover a set of exoplanets in a nearby star system. One of the planets is much closer to its mother star than the other and because of this you are able to determine the average radius of the closer planets orbit to be 37.26 x 10 to the 6 kilometers the Planet complete one orbit every 53.4 days. a) what is the mass of the star in this system?arrow_forward
- 1Which of the following best describes a frame of reference? an experiment that proved that Earth did not have an aether wind the theory that describes the behavior and characteristics of objects moving at relativistic speeds the effect of the slowing of time as an object moves with high speeds a point in which someone relates the behavior of an object from one perspective 2If an electron moves from n = 5 to n = 1, what wavelength of light is emitted? (h = 6.626 x 10-34, 1 eV = 1.6 x 10-19 J) 4008 nm 434 nm 95 nm 1281 nm 3Which of the following best describes a frame of reference? an experiment that proved that Earth did not have an aether wind the theory that describes the behavior and characteristics of objects moving at relativistic speeds the effect of the slowing of time as an object moves with high speeds a point in which someone relates the behavior of an object from…arrow_forwardThe Universal Law of Gravitation a. How does halving the distance between two objects affect the gravitational force between them? b. Suppose the Sun was somehow replaced by a star with five times as much mass. What would happen to the gravitational force between the Earth and the Sun? c. How long would the Earth year last in this last case? (hint: Newton’s version of Kepler’s 3rd Law)arrow_forwardAn astronomical unit a.is the average distance from the Earth to the Sun. b.is about 150 million kilometres. c.is measured using radar signals bouncing off Venus. d.has units of distance. e.all of the mentioned choices. Galileo made many discoveries. Which one of these is not attributed to him? a.that the Moon has mountains, valleys and craters b.that the Sun has imperfections known as sunspots c.that four small points of light orbit the planet Jupiter d.the invention of the telescope e.that Venus shows a complete cycle of phases Which one of these statements describes why the planet Venus is much warmer than Earth? a.Venus has a denser and deeper atmosphere. b.It is closer to the Sun than Earth. c.It experienced a 'runaway greenhouse effect' long ago. d.It produces more carbon dioxide than is absorbed by the surface. e.all of the mentioned statementsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Length contraction: the real explanation; Author: Fermilab;https://www.youtube.com/watch?v=-Poz_95_0RA;License: Standard YouTube License, CC-BY