EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 13, Problem 51PCE
(a)
To determine
The maximum speed of the mass.
(b)
To determine
The distance of the mass from the equilibrium position when the speed of the mass is half the maximum speed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
answer vii) onwards and dont use chatgpt thank you!
An object with a mass of 5 kilograms is a distance of 5 meters above the surface
of the earth. If the acceleration due to gravity is 10 meters per second squared,
:the potential energy of the object relative to the surface of the earth is
A particle is moving on a straight line and all the
forces acting on it produce a constant power P
calculate the distance travelled by the particle in
the interval its speed increase from V to 2V.
Chapter 13 Solutions
EBK PHYSICS
Ch. 13.1 - If the frequency of an oscillator is halved, by...Ch. 13.2 - Prob. 2EYUCh. 13.3 - An object moves with simple harmonic motion about...Ch. 13.4 - Rank the four massspring systems in Figure 13-15...Ch. 13.5 - The total mechanical energy of an ideal...Ch. 13.6 - Rank the four pendulum systems in Figure 13-25 in...Ch. 13.7 - The amplitude of a damped oscillation decreases...Ch. 13.8 - When you drive a pendulum at a frequency f1, you...Ch. 13 - A basketball player dribbles a ball with a steady...Ch. 13 - A person rides on a Ferris wheel that rotates with...
Ch. 13 - An air-track cart bounces back and forth between...Ch. 13 - If a mass m and a mass 2m oscillate on identical...Ch. 13 - An object oscillating with simple harmonic motion...Ch. 13 - The position of an object undergoing simple...Ch. 13 - The pendulum bob in Figure 13-18 leaks sand onto...Ch. 13 - A person in a rocking chair completes 12 cycles in...Ch. 13 - While fishing for catfish, a fisherman suddenly...Ch. 13 - If you dribble a basketball with a frequency of...Ch. 13 - You take your pulse and observe 74 heartbeats in a...Ch. 13 - BIO Slow-Motion Dragonfly A frame-by-frame...Ch. 13 - Predict/Calculate (a) Your heart beats with a...Ch. 13 - You rev your cars engine to 3300 rpm (rev/min)....Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - A mass moves back and forth in simple harmonic...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - The position of a mass oscillating on a spring is...Ch. 13 - A position-versus-time plot for an object...Ch. 13 - A mass on a spring oscillates with simple harmonic...Ch. 13 - A mass oscillates on a spring with a period of...Ch. 13 - Predict/Calculate Molecular Oscillations An atom...Ch. 13 - A mass oscillates on a spring with a period T and...Ch. 13 - The position of a mass on a spring is given by x =...Ch. 13 - Predict/Calculate A mass attached to a spring...Ch. 13 - A lawn sprinkler oscillates with simple harmonic...Ch. 13 - A ball rolls on a circular track of radius 0.62 m...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - A child rocks back and forth on a porch swing with...Ch. 13 - Predict/Calculate A 30.0-g goldfinch lands on a...Ch. 13 - BIO Tuning Forks in Neurology Tuning forks are...Ch. 13 - A vibrating structural beam in a spacecraft can...Ch. 13 - A peg on a turntable moves with a constant...Ch. 13 - The pistons in an internal combustion engine...Ch. 13 - Vomit Comet NASA trains astronauts to deal with...Ch. 13 - A 0.84-kg air cart is attached to a spring and...Ch. 13 - Predict/Calculate A person rides on a mechanical...Ch. 13 - An object moves with simple harmonic motion of...Ch. 13 - An object executing simple harmonic motion has a...Ch. 13 - Predict/Explain If a mass m is attached to a given...Ch. 13 - Predict/Explain An old car with worn-out shock...Ch. 13 - Predict/Explain The two blocks in Figure 13-34...Ch. 13 - A 0.49-kg mass attached to a spring undergoes...Ch. 13 - A freshly caught catfish is placed on a spring...Ch. 13 - System A consists of a mass m attached to a spring...Ch. 13 - Find the periods of block 1 and block 2 in Figure...Ch. 13 - When a 0.62-kg mass is attached to a vertical...Ch. 13 - A spring with a force constant of 82 N/m is...Ch. 13 - A bunch of grapes is placed in a spring scale at a...Ch. 13 - Two people with a combined mass of 125 kg hop into...Ch. 13 - A 0.95-kg mass attached to a vertical spring of...Ch. 13 - When a 0.184-kg mass is attached to a vertical...Ch. 13 - Predict/Calculate The springs of a 511-kg...Ch. 13 - Predict/Calculate If a mass m is attached to a...Ch. 13 - A 0.285-kg mass is attached to a spring with a...Ch. 13 - A 1.6-kg mass attached to a spring oscillates with...Ch. 13 - Predict/Calculate A 0.40-kg mass is attached to a...Ch. 13 - Prob. 51PCECh. 13 - BIO Astronaut Mass An astronaut uses a Body Mass...Ch. 13 - Predict/Calculate A 0.505-kg block slides on a...Ch. 13 - A 3.55-g bullet embeds itself in a 1.47-kg block,...Ch. 13 - Metronomes, such as the penguin shown in Figure...Ch. 13 - Predict/Explain A grandfather clock keeps correct...Ch. 13 - An observant fan at a baseball game notices that...Ch. 13 - A simple pendulum of length 2.3 m makes 5.0...Ch. 13 - United Nations Pendulum A large pendulum with a...Ch. 13 - Predict/Calculate If the pendulum in the previous...Ch. 13 - A Hula Hoop hangs from a peg. Find the period of...Ch. 13 - A fireman tosses his 0.98-kg hat onto a peg, where...Ch. 13 - Predict/Calculate Consider a meterstick that...Ch. 13 - On the construction site for a new skyscraper, a...Ch. 13 - BIO (a) Find the period of a childs leg as it...Ch. 13 - Suspended from the ceiling of an elevator is a...Ch. 13 - CE An object undergoes simple harmonic motion with...Ch. 13 - CE If the amplitude of a simple harmonic...Ch. 13 - CE A mass m is suspended from the ceiling of an...Ch. 13 - CE A pendulum of length L is suspended from the...Ch. 13 - A 1.3-kg mass is attached to a spring with a force...Ch. 13 - BIO Measuring an Astronauts Mass An astronaut uses...Ch. 13 - Sunspot Observations Sunspots vary in number as a...Ch. 13 - BIO Weighing a Bacterium Scientists are using...Ch. 13 - CE An object undergoing simple harmonic motion...Ch. 13 - The maximum speed of a 4.1-kg mass attached to a...Ch. 13 - The acceleration of a block attached to a spring...Ch. 13 - Helioseismology In 1962, physicists at Cal Tech...Ch. 13 - Predict/Calculate A 9.50-g bullet, moving...Ch. 13 - BIO Spiderweb Oscillations A 1.44-g spider...Ch. 13 - A service dog tag (Figure 13-40) is a circular...Ch. 13 - Calculate the ratio of the kinetic energy to the...Ch. 13 - A 0.340-kg mass slides on a frictionless floor...Ch. 13 - A shock absorber is designed to quickly damp out...Ch. 13 - Predict/Calculate Figure 13-41 shows a...Ch. 13 - Predict/Calculate A 3.2-kg mass on a spring...Ch. 13 - A 0.45-kg crow lands on a slender branch and bobs...Ch. 13 - A mass m is connected to the bottom of a vertical...Ch. 13 - Predict/Calculate Consider the pendulum shown in...Ch. 13 - An object undergoes simple harmonic motion of...Ch. 13 - A physical pendulum consists of a light rod of...Ch. 13 - Predict/Calculate A vertical hollow tube is...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - BIO A Cricket Thermometer, by Jiminy Insects are...Ch. 13 - Predict/Calculate Referring to Example 13-5...Ch. 13 - Predict/Calculate Referring to Example 13-12...Ch. 13 - Predict/Calculate Referring to Example 13-12 (a)...
Knowledge Booster
Similar questions
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardA particle of mass m is at rest at the end of a spring (force constant = k) hanging from a fixed support. At t = 0, a constant downward force F is applied to the mass and acts for a time t0. Show that, after the force is removed, the displacement of the mass from its equilibrium position (x = x0, where x is down) is wherearrow_forwardCheck Your Understanding Suppose the mass in Equation 8.6 is doubled while keeping the all other conditions the same. Would the maximum expansion of the spring increase, decrease, or remain the same? Would the speed at point B be larger, smaller, or the same compared to the original mass?arrow_forward
- 2 (a) Write down the equation of motion for the point particle of mass m moving in the Kepler potential U(x) = -A/x+B/x² where x is the particle displacement in m. (b) Introduce a dissipative term in the equation of motion assuming that the dissipative force acting on a particle is proportional to the partical velocity with the coefficient of proportionality v. Write down the modified equation of motion. (c) Determine the dimensions of parameters A, B, vin SI system of units.arrow_forwardA small mass of 0.5 kg is compressed on a spring with a spring coefficient k=16N/m, a)What is the velocity of the mass when spring is released and the mass start moving free from the spring b) What is the maximum height it can reach on a frictionless ramp?arrow_forwardA particle of mass m moves along the x-axis such that its acceleration is d²x dz² = 8x³. -X. (a) Determine the potential energy, U (x), if U = 0 at x = 0. Define the total energy E of the particle. Calculate dE/dt and conclude that E is a constant of motion. (b) Show that the system has two unstable equilibrium points at x = ±5 equilibrium point at x = 0. Sketch the graph of U(x). (c) The particle is initially at the origin with velocity vo- Show that the particle can escape to +∞ only if |vo|>1/1- =+2√2 and a stablearrow_forward
- Suppose a certain spring’s relaxed length is 13 cm. (a) If we must put 50 J of energy into the spring to compress it to a length of 11 cm, what is its spring constant? (b) What additional energy will be required to compress the spring to a length of 9 cm?arrow_forwardA crate of mass m1 slides down a well-lubricated hill of height h, with negligible friction. At the bottom, where it is moving horizontally, it collides with another crate, of mass m2, that initially was sitting at rest and that is attached to a wall by a spring of spring constant k that initially is at its equilibrium length. Assume that the spring itself has negligible mass. a)Given that the distance d that the crates compress the spring is d=0.35 m, calculate the speed v2 of the crates immediately after the collision, in units of meters per second. Use the following values:k=950 N/mm1=2.4 kgm2=2.6 kgμ=0.49g=9.8 m/s2 b) What was the speed of the crate of mass m1 just before the collision with the second block, in meters per second? c)What is the height h of the hill, in meters?arrow_forwardA crate of mass m1 slides down a well-lubricated hill of height ℎ, with negligible friction. At the bottom, where it is moving horizontally, it collides with another crate, of mass m2, that initially was sitting at rest and that is attached to a wall by a spring of spring constant k that initially is at its equilibrium length. Assume that the spring itself has negligible mass. a) Given that the distance d that the crates compress the spring is d=0.35 m, calculate the speed v2 of the crates immediately after the collision, in units of meters per second. Use the following values: k=950 N/m, m1=2.4kg, m2=2.6kg, μ=0.49, g=9.8 m/s^2 b) What was the speed of the crate of mass m1 just before the collision with the second block, in meters per second? c) What is the height h of the hill, in meters?arrow_forward
- Consider a mass, m, moving under the influence of an effective potential energy b 7.2 U(r) = r where a and b are positive constants and r is the radial distance from the origin. In this case, U(r) is a 1D potential energy. (a) Generate a simple plot the potential energy, U(r) vs r. (b) Next, find the equilibrium distance, ro, for the mass in this potential. Then evaluate minimum potential energy U(r.).arrow_forwardEqual work is carried out on two bodies A and B, initially at rest, and whose masses are M and 2M respectively. The relationship between their speed immediately after the completion of the work is:arrow_forwardQuestion 1: The potential energy of a person is 780 Joule with mass of 20 kg who climbs a flig with stairs of (h) high at constant speed, the value of h is equal.... (а) | 6.97 m (b) | 5.97 m (c) 4.97 m (d) 3.97 m Question 2: Calculate the momentum of the body of mass 10 Kg moving with velocity is 30 m/: (a) 30 kg. m/s (b) 300 kg.m/s (c) | 3000 kg.m/s (d) 300 kg.cm/s Question 3: A force, F =i+j+k (N) is applied on a box. If the displacement of the box due to the force is f =i+f+k (m), then the work done is.. (а) | 3 Joule (b) | 2 Joule (c) 1 Joule (d) 0 Question 4: The product of the mass and the velocity of an object give its energy. (a) | True (b) | Falsearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning