A satellite in a circular orbit of radius r has period T. A satellite in a nearby orbit with radius
a. Show that
b. Two earth satellites are in parallel orbits with radii 6700 km and 6701 km. One day they pass each other, 1 km apart, along a line radially outward from the earth. How long will it be until they are again 1 km apart?
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardTwo planets in circular orbits around a star have speed of v and 2v . (a) What is the ratio of the orbital radii of the planets? (b) What is the ratio of their periods?arrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forward
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardCalculate the effective gravitational field vector g at Earths surface at the poles and the equator. Take account of the difference in the equatorial (6378 km) and polar (6357 km) radius as well as the centrifugal force. How well does the result agree with the difference calculated with the result g = 9.780356[1 + 0.0052885 sin 2 0.0000059 sin2(2)]m/s2 where is the latitude?arrow_forwardFor many years, astronomer Percival Lowell searched for a Planet X that might explain some of the perturbations observed in the orbit of Uranus. These perturbations were later explained when the masses of the outer planets and planetoids, particularly Neptune, became better measured (Voyager 2). At the time, however, Lowell had proposed the existence of a Planet X that orbited the Sun with a mean distance of 43 AU. With what period would this Planet X orbit the Sun?arrow_forward
- An object of mass m is located on the surface of a spherical planet of mass M and radius R. The escape speed from the planet does not depend on which of the following? (a) M (b) m (c) the density of the planet (d) R (e) the acceleration due to gravity on that planetarrow_forwardOn a planet whose radius is 1.2107m , the acceleration due to gravity is 18m/s2 . What is the mass of the planet?arrow_forwardThe astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forward
- In Example 2.6, we considered a simple model for a rocket launched from the surface of the Earth. A better expression for the rockets position measured from the center of the Earth is given by y(t)=(R3/2+3g2Rt)2/3j where R is the radius of the Earth (6.38 106 m) and g is the constant acceleration of an object in free fall near the Earths surface (9.81 m/s2). a. Derive expressions for vy(t) and ay(t). b. Plot y(t), vy(t), and ay(t). (A spreadsheet program would be helpful.) c. When will the rocket be at y=4R? d. What are vy and ay when y=4R?arrow_forwardExplain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.arrow_forwardTwo identical stars with mass M orbit around their center of mass. Each orbit is circular and has radius R, so that the two stars are always on opposite sides of the circle. Part A Find the gravitational force of one star on the other. Express your answer in terms of G, M, R. Πν ΑΣφ ? F = Part B Find the orbital speed of each star. Express your answer in terms of G, M, R. να ΑΣΦ7 ? Part Carrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College