PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13, Problem 51EAP
A 4000 kg lunar lander is in orbit 50 km above the surface of the moon. It needs to move out to a 300-km-high orbit in order to link up with the mother ship that will take the astronauts home. How much work must the thrusters do?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 5000 kg lunar lander is in orbit 80 km above the surface of the moon. It needs to move out to a 400 km -high orbit in order to link up with the mother ship that will take the astronauts home.How much work must the thrusters do?
A 2660-kg spacecraft is in a circular orbit 1540 km above the surface of Mars.
How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4500 km above the surface?
Express your answer to three significant figures.
In a futuristic scenario, you are assigned the mission of making an enemy satellite that is in a circular orbit around Earth inoperative. You know you cannot destroy the satellite, as it is well protected against attack, but you can try to knock it out of its orbit so it will fly away and never return. What is the minimum amount of work ?� applied to the satellite that is required to accomplish that? The satellite's mass and altitude are 969 kg and 299 km. Earth's mass and radius are 5.98×1024 kg and 6370 km.
Chapter 13 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 13 - Prob. 1CQCh. 13 - The gravitational force of a star on orbiting...Ch. 13 - A 1000 kg satellite and a 2000 kg satellite follow...Ch. 13 - How far away from the earth must an orbiting...Ch. 13 - A space station astronaut is working outside the...Ch. 13 - The free-fall acceleration at the surface of...Ch. 13 - Why is the gravitational potential energy of two...Ch. 13 - The escape speed from Planet X is 10,000 m/s....Ch. 13 - The mass of Jupiter is 300 times the mass of the...Ch. 13 - Satellites in near-earth orbit experience a very...
Ch. 13 - What is the ratio of the surfs gravitational force...Ch. 13 - What is the ratio of the sun’s gravitational force...Ch. 13 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 13 - What is the force of attraction between a 50 kg...Ch. 13 - The International Space Station orbits 300 km...Ch. 13 - Two 65 kg astronauts leave earth in a spacecraft,...Ch. 13 - A 20 kg sphere is at the origin and a 10kg sphere...Ch. 13 - a. What is the free-fall acceleration at the...Ch. 13 - What is the free-fall acceleration at the surface...Ch. 13 - A sensitive gravimeter at a mountain observatory...Ch. 13 - Saturn’s moon Titan has a mass of 1.351023 kg and...Ch. 13 - A newly discovered planet has a radius twice as...Ch. 13 - Suppose we could shrink the earth without changing...Ch. 13 - Planet Z is 10.000 km in diameter. The free-fall...Ch. 13 - An astronaut on earth can throw a ball straight up...Ch. 13 - What is the escape speed from Jupiter?Ch. 13 - A rocket is launched straight up from the earth’s...Ch. 13 - A space station orbits the sun at the same...Ch. 13 - Prob. 19EAPCh. 13 - Nothing can escape the event horizon of a black...Ch. 13 - You have been visiting a distant planet. Your...Ch. 13 - Two meteoroids are heading for earth. Their speeds...Ch. 13 - A binary star system has to stars, each with the...Ch. 13 - The asteroid belt circles the sun between the...Ch. 13 - You are the science officer on a visit to a...Ch. 13 - Three satellites orbit a planet of radius R, as...Ch. 13 - A satellite orbits the sun with a period of 1.0...Ch. 13 - A new planet is discovered orbiting the star Vega...Ch. 13 - Prob. 29EAPCh. 13 - An earth satellite moves in a circular orbit at a...Ch. 13 - What are the speed and altitude of a...Ch. 13 - a. At what height above the earth is the free-fall...Ch. 13 - Prob. 33EAPCh. 13 - Pluto moves in a fairly elliptical orbit around...Ch. 13 - FIGURE P13.35 shows three masses. What are the...Ch. 13 - What are the magnitude and direction of the net...Ch. 13 - Prob. 37EAPCh. 13 - What is the total gravitational potential energy...Ch. 13 - Two spherical objects have a combined mass of 150...Ch. 13 - Two 100 kg lead spheres are suspended from...Ch. 13 - Prob. 41EAPCh. 13 - An object of mass m is dropped from height h above...Ch. 13 - A projectile is shot straight up from the earth’s...Ch. 13 - Prob. 44EAPCh. 13 - 45. An astronaut circling the earth at an altitude...Ch. 13 - Suppose that on earth you can jump straight up a...Ch. 13 - Prob. 47EAPCh. 13 - Two spherical asteroids have the same radius R....Ch. 13 - A starship is circling a distant planet of radius...Ch. 13 - The two stars in a binary star system have masses...Ch. 13 - A 4000 kg lunar lander is in orbit 50 km above the...Ch. 13 - The 75,000 kg space shuttle used to fly in a...Ch. 13 - How much energy would be required to move the...Ch. 13 - NASA would like to place a satellite in orbit...Ch. 13 - In 2014, the European Space Agency placed a...Ch. 13 - A satellite orbiting the earth is directly over a...Ch. 13 - FIGURE P13.57 shows two planets of mass m orbiting...Ch. 13 - Figure 13.17 showed a graph of log T versus log r...Ch. 13 - Large stars can explode as they finish burning...Ch. 13 - The solar system is 25,000 light years from the...Ch. 13 - Three stars, each with the mass of our sun, form...Ch. 13 - Comets move around the sun in very elliptical...Ch. 13 - A 55,000 kg space capsule is in a...Ch. 13 - Prob. 64EAPCh. 13 - Prob. 65EAPCh. 13 - Prob. 66EAPCh. 13 - Two Jupiter size planets are released from rest...Ch. 13 - A satellite in a circular orbit of radius r has...Ch. 13 - While visiting Planet Physics. you toss a rock...Ch. 13 - A moon lander is orbiting the moon at an altitude...Ch. 13 - Let’s look in more detail at how a satellite is...Ch. 13 - FIGURE CP13.72 shows a particle of mass m at...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardFind the escape speed of a projectile from the surface of Jupiter.arrow_forwardCheck Your Understanding If we send a probe out of the solar system starting form Earth’s surface, do we only have to escape the Sun?arrow_forward
- In a futuristic scenario, you are assigned the mission of making an enemy satellite that is in a circular orbit around Earth inoperative. You know you cannot destroy the satellite, as it is well protected against attack, but you can try to knock it out of its orbit so it will fly away and never return. What is the minimum amount of work ? applied to the satellite that is required to accomplish that? The satellite's mass and altitude are 975 kg and 259 km. Earth's mass and radius are 5.98×1024 kg and 6370 km.W = ? Jarrow_forwardTwo Martian satellites, A and B, are in circular orbits around Mars’ center. Satellite A orbits at an altitude of 4200 km, and satellite B orbits at an altitude of 12,600 km. The mass of each satellite is 950kg. a. What are the potential energies of the two satellites? (Note, altitude is measured from the surface of a planet, but the distances in the expressions for force/energy/field are measured from the center of the planet.) b.What are the kinetic energies of the two satellites? c. How much work would be required to move satellite A to the orbit of satellite B?arrow_forward32. a) Evaluate the gravitational potential energy between two 5.00-kg spherical steel balls separated by a center-to-center distance of 15.0 cm. (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast will they be traveling upon impact. Each sphere has a radius of 5.10 cm.arrow_forward
- A space probe is in orbit around Mars at an altitude of 1200 km. To move to a higher orbit, small rocket engines are used to provide the energy required.(a) Compare the kinetic energy of the space probe in the lower and higher orbit.(b) Explain why energy is required to move the space probe from a lower to a higher orbit. In your answer refer to the total energy of the satellite.arrow_forwardA rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s-1. If 20% of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it ? Mass of mars = 6.4×1023 kg; radius of mars = 3395 km; G = 6.67×10-11 N m2 kg-2.arrow_forwardA 4500-kg spaceship is in a circular orbit 210 km above the surface of Earth. It needs to be moved into a higher circular orbit of 380 km to link up with the space station at that altitude. In this problem you can take the mass of the Earth to be 5.97 × 1024 kg. How much work, in joules, do the spaceship’s engines have to perform to move to the higher orbit? Ignore any change of mass due to fuel consumption.arrow_forward
- A 4500-kg spaceship is in a circular orbit 190 km above the surface of Earth. It needs to be moved into a higher circular orbit of 390 km to link up with the space station at that altitude. In this problem you can take the mass of the Earth to be 5.97 × 1024 kg.How much work, in joules, do the spaceship’s engines have to perform to move to the higher orbit? Ignore any change of mass due to fuel consumption.arrow_forwardA 4500-kg spaceship is in a circular orbit 190 km above the surface of Earth. It needs to be moved into a higher circular orbit of 390 km to link up with the space station at that altitude. In this problem you can take the mass of the Earth to be 5.97 × 1024 kg. How much work, in joules, do the spaceship’s engines have to perform to move to the higher orbit? Ignore any change of mass due to fuel consumption. W=arrow_forwardA spacecraft with a mass of 5000kg is in circular orbit 2000km above the surface of mars. How much work must the spacecraft engines perform to move the spacecraft to a circular orbit that is 4000km above the surface? (hint Total Energy = Ep+ Ek)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY