FOUNDATIONS OF COLLEGE CHEM +KNEWTONALTA
15th Edition
ISBN: 9781119797807
Author: Hein
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 41AE
Interpretation Introduction
Interpretation:
Reason for anhydrous copper sulfate to act as an indicator for moisture has to be determined.
Concept Introduction:
Hydrate is defined as compound that comprises of water molecules attached to its formula unit. Number of water molecules attached to formula unit of compound can be 1 or more than 1 and is called water of crystallization.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 241.3 gram sample of CoCl2 2H₂O is heated to dryness. Find the mass of anhydrous salt
remaining.
●
In an experiment, 34.8243g of copper (II) nitrate hydrate, Cu(NO3)2•zH2O was heated to a constant mass of 27.0351g.
What was the mass of water lost?
A hydrate of nickel(II) chloride (NiCl2·XH2O) decomposes to produce 29.5% water & 70.5% AC. Calculate the water of crystallization for this hydrated compound. (The molar mass of anhydrous NiCl2 is 129.6 g/mol.)
In other words, what is the X in the formula: NiCl2·XH2O?
Chapter 13 Solutions
FOUNDATIONS OF COLLEGE CHEM +KNEWTONALTA
Ch. 13.2 - Prob. 13.1PCh. 13.2 - Prob. 13.2PCh. 13.3 - Prob. 13.3PCh. 13.3 - Prob. 13.4PCh. 13.4 - Prob. 13.5PCh. 13.5 - Prob. 13.6PCh. 13.5 - Prob. 13.7PCh. 13.5 - Prob. 13.8PCh. 13.6 - Prob. 13.9PCh. 13.6 - Prob. 13.10P
Ch. 13 - Prob. 1RQCh. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Prob. 10RQCh. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - Prob. 15RQCh. 13 - Prob. 16RQCh. 13 - Prob. 17RQCh. 13 - Prob. 19RQCh. 13 - Prob. 20RQCh. 13 - Prob. 21RQCh. 13 - Prob. 22RQCh. 13 - Prob. 23RQCh. 13 - Prob. 24RQCh. 13 - Prob. 25RQCh. 13 - Prob. 26RQCh. 13 - Prob. 27RQCh. 13 - Prob. 28RQCh. 13 - Prob. 29RQCh. 13 - Prob. 30RQCh. 13 - Prob. 31RQCh. 13 - Prob. 32RQCh. 13 - Prob. 33RQCh. 13 - Prob. 34RQCh. 13 - Prob. 35RQCh. 13 - Prob. 36RQCh. 13 - Prob. 37RQCh. 13 - Prob. 38RQCh. 13 - Prob. 39RQCh. 13 - Prob. 40RQCh. 13 - Prob. 41RQCh. 13 - Prob. 42RQCh. 13 - Prob. 43RQCh. 13 - Prob. 1PECh. 13 - Prob. 2PECh. 13 - Prob. 3PECh. 13 - Prob. 4PECh. 13 - Prob. 5PECh. 13 - Prob. 6PECh. 13 - Prob. 7PECh. 13 - Prob. 8PECh. 13 - Prob. 9PECh. 13 - Prob. 10PECh. 13 - Prob. 11PECh. 13 - Prob. 12PECh. 13 - Prob. 13PECh. 13 - Prob. 14PECh. 13 - Prob. 15PECh. 13 - Prob. 16PECh. 13 - Prob. 17PECh. 13 - Prob. 18PECh. 13 - Prob. 19PECh. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - Prob. 22PECh. 13 - Prob. 23PECh. 13 - Prob. 24PECh. 13 - Prob. 25PECh. 13 - Prob. 26PECh. 13 - Prob. 27PECh. 13 - Prob. 28PECh. 13 - Prob. 29PECh. 13 - Prob. 30PECh. 13 - Prob. 31PECh. 13 - Prob. 32PECh. 13 - Prob. 33AECh. 13 - Prob. 34AECh. 13 - Prob. 35AECh. 13 - Prob. 36AECh. 13 - Prob. 38AECh. 13 - Prob. 39AECh. 13 - Prob. 40AECh. 13 - Prob. 41AECh. 13 - Prob. 42AECh. 13 - Prob. 43AECh. 13 - Prob. 44AECh. 13 - Prob. 45AECh. 13 - Prob. 46AECh. 13 - Prob. 47AECh. 13 - Prob. 48AECh. 13 - Prob. 49AECh. 13 - Prob. 50AECh. 13 - Prob. 51AECh. 13 - Prob. 52AECh. 13 - Prob. 53AECh. 13 - Prob. 54AECh. 13 - Prob. 55AECh. 13 - Prob. 56AECh. 13 - Prob. 57AECh. 13 - Prob. 58AECh. 13 - Prob. 59AECh. 13 - Prob. 60AECh. 13 - Prob. 61AECh. 13 - Prob. 62AECh. 13 - Prob. 63AECh. 13 - Prob. 64AECh. 13 - Prob. 65AECh. 13 - Prob. 66AECh. 13 - Prob. 67AECh. 13 - Prob. 69CECh. 13 - Prob. 70CECh. 13 - Prob. 71CECh. 13 - Prob. 72CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 4. The common oxidation number for an alkaline earth metal is +2. (a) Using the Born-Mayer equation (for determining the lattice enthalpy) and a Born-Haber cycle (draw it), show that CaCl is an exothermic compound (negative AHf). Make a reasonable prediction to estimate the ionic radius of Ca (explain your reasoning). The sublimation (atomization) enthalpy for Ca(s) is 178 kJ/mol. (b) Show that an explanation for the non-existence of CaCl can be found in the enthalpy change for the reaction below. The AHf for CaCl2(s) is -190.2 kcal/mol. 2 CaCl(s) → Ca(s) + CaCl2(s)arrow_forwardHow do you classify silicates? What are the various forms? Give one example each.arrow_forwardSilica is utilized in the production of a computer's CPU chip.arrow_forward
- Sodium hydrogen sulfate is used as a cleaning agent and as a flux (a substance that promotes the fusing of metals and prevents the formation of oxides). One of the ways in which sodium hydrogen sulfate is manufactured is by reacting sodium dichromate, Na2Cr2O7, with sulfuric acid. This process also forms water and chromium(VI) oxide, CrO3. Write a balanced equation for this reaction. (You do not need to include states.) How many kilograms of sodium dichromate, Na2Cr2O7, are necessary to produce 130.4 kg of sodium hydrogen sulfate? How many kilograms of chromium(VI) oxide are formed when 130.4 kg of sodium hydrogen sulfate is made? What is the minimum volume of 18.0 M H2SO4 solution necessary to react with 874.0 kg of sodium dichromate? What is the maximum mass of sodium hydrogen sulfate, NaHSO4, that can be formed from the reaction of 874.0 kg of sodium dichromate with 400.0 L of 18.0 M H2SO4?arrow_forwardA student investigated the stoichiometry of the nickel (II) nitrate - sodium sulfide - water system using a mole ratio experimental design and reported the data given in the table. From these data, what is the possible formula of the product from the reaction of Ni(NO3)2 and Na2S?arrow_forwardNitrogen is found in nature as N2(g). Would you expect phosphorus to be found innature as P2(g)? Explain.arrow_forward
- Silica is utilized in the manufacture of the central processing unit (CPU) chip used in computers.arrow_forwardSilica is utilized in part to make the CPU chip in a computer.arrow_forwardCobalt (II) chloride hexahydrate, CoCl2 · 6H2O, is often used as a humidity indicator. This is due to the fact that the hydrate is a deep magenta color while the anhydrous form is a pale blue. As the humidity level changes, the color changes as well. What is the mass percent water in cobalt (II) hexahydrate ?arrow_forward
- Which of the following compounds would you expect to have the lowest melting point? CaO H2O Na2O LiCl NaHarrow_forwardWhat is the composition, in atom percent, of an alloy that contains a) 35 g copper and b) 49 g zinc? The atomic weights for zinc and copper are 65.41 and 63.55 g/mol, respectively.arrow_forwardSome salts make hydrates when there is moisture around. Some hydrate samples can absorb lights in visible legion. Therefore, they show some colors. Thus, hydrates can be used to detect the moisture in the environment. Let's say you are working in a laboratory with a group and you are the only student who has taken chemistry courses. Your laboratory received a sample of cobalt(II) chloride which has the formula CoCl2·xH2O. Let's say your boss asked you to find the formula of this hydrate salt sample since you are the only chemist there. From your laboratory experience, simply explain the experimental procedure you would follow to find the formula of this unknown sample. Then, use the given data for the calculation part. Mass of crucible: 32.27g Mass of crucible + unknown hydrate: 33.92 g Color of unknown hydrate: purple Mass of crucible + anhydrous form of hydrate: 33.41 g Color of anhydrous form: sky bluearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY