Applied Statistics in Business and Economics
5th Edition
ISBN: 9781259329050
Author: DOANE
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 3CR
(a)
To determine
Describe the format of a multiple regression data set.
(b)
To determine
Explain why it is good idea to write a priori reasoning about a proposed regression.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Demonstrate the two important things that should be done before one performs a
regression analysis.
The data in the table represent the number of licensed drivers in various age groups and the number of fatal accidents within the age group by gender. Complete parts (a) to (c) below.
Click the icon to view the data table.
(a) Find the least-squares regression line for males treating the number of licensed drivers as the explanatory variable, x, and the number of fatal crashes, y, as the response variable. Repeat this procedure for females.
Find the least-squares regression line for males.
Data for licensed drivers by age and gender.
y =
x+
(Round the slope to three decimal places and round the constant to the nearest integer as needed.)
Find the least-squares regression line for females.
y =x+
Number of
Number of
(Round the slope to three decimal places and round the constant to the nearest integer as needed.)
Number of Male Fatal
Number of Female Fatal
Licensed Drivers Crashes
Licensed Drivers
Crashes
(b) Interpret the slope of the least-squares regression line for each gender, if…
Explain the assumptions are needed to calculate the various inferential statistics of linear regression?
Chapter 13 Solutions
Applied Statistics in Business and Economics
Ch. 13.1 - Observations are taken on net revenue from sales...Ch. 13.1 - Observations are taken on sales of a certain...Ch. 13.1 - Prob. 3SECh. 13.1 - A regression model to predict Y, the...Ch. 13.2 - Refer to the ANOVA table below. (a) State the...Ch. 13.2 - Refer to the ANOVA table below. (a) State the...Ch. 13.2 - Prob. 7SECh. 13.2 - Refer to the ANOVA table below. (a) State the...Ch. 13.3 - Observations are taken on net revenue from sales...Ch. 13.3 - Observations are taken on sales of a certain...
Ch. 13.3 - Prob. 11SECh. 13.3 - A regression model to predict Y, the state...Ch. 13.4 - A regression of accountants starting salaries in a...Ch. 13.4 - An agribusiness performed a regression of wheat...Ch. 13.5 - Prob. 15SECh. 13.5 - A regression model to predict the price of...Ch. 13.5 - Prob. 17SECh. 13.5 - Prob. 18SECh. 13.6 - Prob. 19SECh. 13.6 - Prob. 20SECh. 13.7 - Prob. 21SECh. 13.7 - Using the Metals data, construct a correlation...Ch. 13.8 - Prob. 23SECh. 13.8 - Which violations of regression assumptions, if...Ch. 13 - (a) List two limitations of simple regression. (b)...Ch. 13 - (a) What does represent in the regression model?...Ch. 13 - Prob. 3CRCh. 13 - Prob. 4CRCh. 13 - Prob. 5CRCh. 13 - Prob. 6CRCh. 13 - Prob. 7CRCh. 13 - Prob. 8CRCh. 13 - Prob. 9CRCh. 13 - (a) State the formula for the standard error of...Ch. 13 - (a) What is a categorical predictor? (b) Why is a...Ch. 13 - Prob. 12CRCh. 13 - Prob. 13CRCh. 13 - (a) What is multicollinearity? (b) What are its...Ch. 13 - Prob. 15CRCh. 13 - (a) State the formula for a variance inflation...Ch. 13 - Prob. 17CRCh. 13 - Prob. 18CRCh. 13 - Prob. 19CRCh. 13 - Prob. 20CRCh. 13 - (a) Name two ways to detect autocorrelated...Ch. 13 - (a) What is a lurking variable? How might it be...Ch. 13 - Instructions for Data Sets: Choose one of the data...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Prob. 27CECh. 13 - Note: Exercises marked are based on optional...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Prob. 30CECh. 13 - Prob. 31CECh. 13 - Prob. 32CECh. 13 - Prob. 33CECh. 13 - Prob. 34CECh. 13 - Prob. 35CECh. 13 - Note: Exercises marked are based on optional...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Note: Exercises marked are based on optional...Ch. 13 - Prob. 39CECh. 13 - Prob. 40CECh. 13 - Prob. 41CECh. 13 - In a model of Fords quarterly revenue TotalRevenue...Ch. 13 - In a study of paint peel problems, a regression...Ch. 13 - A hospital emergency room analyzed n = 17,664...Ch. 13 - Prob. 45CECh. 13 - A researcher used stepwise regression to create...Ch. 13 - A sports enthusiast created an equation to predict...Ch. 13 - An expert witness in a case of alleged racial...Ch. 13 - Prob. 50CECh. 13 - Prob. 51CECh. 13 - Prob. 52CECh. 13 - Which statement is correct concerning one-factor...Ch. 13 - Prob. 2ERQCh. 13 - Prob. 3ERQCh. 13 - Prob. 4ERQCh. 13 - Prob. 5ERQCh. 13 - Prob. 6ERQCh. 13 - Prob. 7ERQCh. 13 - Prob. 8ERQCh. 13 - Prob. 9ERQCh. 13 - Prob. 10ERQCh. 13 - Prob. 11ERQCh. 13 - Prob. 12ERQCh. 13 - Prob. 13ERQCh. 13 - Prob. 14ERQCh. 13 - Prob. 15ERQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardFind the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardYou are analyzing a dataset with 749 datapoints. You decide to create a linear regression model with this dataset, using 12 predictor variables. Using this information, what is the degrees of freedom associated with the sum of squares regression in your analysis?arrow_forward
- Eleven states were randomly selected from among the 50 United States. This data represents the percentage of households in each state that are below the poverty level (Poverty Rate) based on household income and the percentage of adults in the state who had earned at least a high school degree (HS and Above). (a) Describe the relationship between the variables. (b) What is the slope of the least-squares regression line for this data? Interpret this value. (c) Predict the percent of adults who had attained at least a high school degree for the state with a poverty rate of 15%? Show your work. (d) Find the residual for the state with a poverty rate of 15%. Interpret the residual.arrow_forwardThe Cronch Café, located at the Gulf of Mexico, has an increase in business during the summer vacation season. The owner hires a large number of servers as seasonal help. When he interviews a prospective server, he would like to provide data on the amount a server can earn in tips. He believes that the amount of the bill and the number of diners are both related to the amount of the tip. He gathered this sample information. 1) Develop a multiple regression model with the amount of tips as the dependent variable and the amount of the bill and the amount of diners as independent variables. Write out the regression equation. How much does another diner add to the amount of the tips? 2) Conduct a global test of hypothesis to determine if at least one of the independent variables is significant. What is your conclusion? Customer Amount of Tip ($) Amount of Bill ($) Diners 1 5.15 74.5 2 2 4.5 28.23 4 3 1 10.65 1 4 2.4 19.82 3 5 5 28.62 3 6 4.25 24.83 2 7 0.5 6.25 1…arrow_forwardExplain why the interpretation of the regression coefficients is difficult when the predictor variables are highly intercorrelated.arrow_forward
- when a regression is used as a method of predicting dependent variables from one or more independent variables. How are the independent variables different from each other yet related to the dependent variable?arrow_forwardThe marketing manager wants to test if the effect of the MBA program on salary depends on the work experience while controlling for the other factors. Which regression model is the MOST appropriate? O a. Salary = B_0+B_1 MBA+B_2 Work +B_3 Age +3_4 Gender + 8 Ob. Salary = B_0+ B_1 MBAx Work + B_2 Age + B 3 Gender & Oc. Salary = B_0+ B_1 MBA + B_2 MBA x Work + B_3 Age + B_4 Gender + e Od. Salary = B_0+ B_1 MBA+B_2 Work + B_3 MBA x Work + 3_4 Age + B_5 Gender + &arrow_forwardExplain Multivariate regression coefficients?arrow_forward
- Could I get help on this, my topic is: What Factors Influence Box Office Performance in the Film Industry? Sample: 30 Dependent Variable: Sum of Total Revenue Independent Variable: Budget, Release date, Marketing expenditure, Ratings, Number of screens Could you make a regression analysis model on this and get back to me? I've tried multiple times but I just can't get it to work.arrow_forwardAn engineer wants to determine how the weight of a gas-powered car, x, affects gas mileage, y. The accompanying data represent the weights of various domestic cars and their miles per gallon in the city for the most recent model year. Complete parts (a) through (d) below. Click here to view the weight and gas mileage data. ..... (a) Find the least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable. x + (Round the x coefficient to five decimal places as needed. Round the constant to one decimal place as needed.) (b) Interpret the slope and y-intercept, if appropriate. Choose the correct answer below and fill in any answer boxes in your choice. (Use the answer from part a to find this answer.) A. For every pound added to the weight of the car, gas mileage in the city will decrease by mile(s) per gallon, on average. A weightless car will get miles per gallon, on average. O B. A weightless car will get miles per gallon, on…arrow_forwardAn engineer wants to determine how the weight of a gas-powered car, x, affects gas mileage, y. The accompanying data represent the weights of various domestic cars and their miles per gallon in the city for the most recent model year. Complete parts (a) through (d) below. Click here to view the weight and gas mileage data. ..... (a) Find the least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable. y = + (Round the x coefficient to five decimal places as needed. Round the constant to one decimal place as needed.) (b) Interpret the slope and y-intercept, if appropriate. Choose the correct answer below and fill in any answer boxes in your choice. (Use the answer from part a to find this answer.) O A. For every pound added to the weight of the car, gas mileage in the city will decrease by mile(s) per gallon, on average. It is not appropriate to interpret the y-intercept. B. A weightless car will get miles per gallon, on…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY