Practical Operations Management
2nd Edition
ISBN: 9781939297136
Author: Simpson
Publisher: HERCHER PUBLISHING,INCORPORATED
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 26P
Summary Introduction
Interpretation:
The z-value that the manager should use while calculating the limits for this chart.
Concept Introduction:
The z-value determines how many deviations will an individual away from the actual mean. If the z=0, then the mean is considered as on the mean.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
snip
A Quality Analyst wants to construct a control chart for determining whether three machines, all producing
the same product, are under control with regard to a particular quality variable. Accordingly, he sampled four
units of output from each machine, with the following results:
Machine
Measurements
#1
17
15
15
17
#2
16
25
18
25
# 3
23
24
23
22
What is the estimate of the process mean for whenever it is under control?
What is the sample average range based upon this limited sample?
What are the x-bar chart upper and lower control limits?
An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approximately normal with a mean of 1.0 liter and standard deviation of .01 liter. Output is monitored using means of samples of 25 observations.
Determine upper and lower control limits that will include roughly 97% of the sample means when the process is in control. Using Appendix B, Table A to find the value of Z corresponding to the mean control limits.
Chapter 13 Solutions
Practical Operations Management
Ch. 13 - Prob. 1DQCh. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - Prob. 5P
Ch. 13 - Prob. 6PCh. 13 - Prob. 7PCh. 13 - Prob. 8PCh. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 11PCh. 13 - Prob. 12PCh. 13 - Prob. 13PCh. 13 - Prob. 14PCh. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Prob. 17PCh. 13 - Prob. 18PCh. 13 - Prob. 19PCh. 13 - Prob. 20PCh. 13 - Prob. 21PCh. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Prob. 24PCh. 13 - Prob. 25PCh. 13 - Prob. 26PCh. 13 - Prob. 27PCh. 13 - Prob. 28PCh. 13 - Prob. 29PCh. 13 - Prob. 30PCh. 13 - Prob. 31PCh. 13 - Prob. 1.1QCh. 13 - Prob. 1.2QCh. 13 - Prob. 1.3QCh. 13 - Prob. 1.4Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 5 pistons produced each day, the mean and the range of this diameter have been as follows: Day Mean (mm) Range R (mm) 158 4.3 151.2 4.4 155.7 4.2 153.5 4.8 156.6 4.5 What is the UCL using 3-sigma?(round your response to two decimal places). 1. 2. 4.arrow_forwardSample size (n) is 16, mean of the sample means ( ) is 15, mean of the sample ranges ( ) is 6, and population standard deviation ( ) is not known. Calculate the UCL and LCL of the mean chart (x-Chart) for this process. Group of answer choices Cannot be calculated UCL=33.0, LCL=-3.0 UCL=13.73, LCL=16.27 UCL=16.27, LCL=13.73 UCL=33.0, LCL=0arrow_forward1. An ad agency tracks the complaints, by week received, about the billboards in its city: Week No. of Complaints 1 8 2 4 3 11 4 16 5 8 6 9 This exercise contains only parts a, b, and c. a) The type of control chart that is best to monitor this process is c minus chartc−chart . b) Using z = 3, the control chart limits for this process are (assume that the historical complaints rate is unknown): UCLc =?complaints per week (round your response to two decimal places). LCLc =?complaints per week (round your response to two decimal places).arrow_forward
- sniparrow_forwardFactors for Computing Control Chart Limits (3 sigma) Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows: Day Mean x (mm) Range R (mm) 1 156.9 4.2 2 153.2 4.6 3 153.6 4.1 4 155.5 5.0 5 156.6 4.5 Part 4 c) What are the (UCLx) and (LCLx) using 3-sigma? (UCLx) = mm (round your response to two decimal places). (LCLx) = mmarrow_forwardYou are an analyst for a company that produces parts for medical devices, and these parts must meet specifications required by your customer. You implement a process improvement to decrease the variation in diameter for one of the parts, and want to determine if the process improvement had any effect. What type of control chart would be most appropriate to determine if the process improvement did in fact reduce variation in the output of the process? Group of answer choices a X-bar b R c P d C e Cpkarrow_forward
- 7. An ad agency tracks the complaints, by week received, about the billboards in its city: Week No. of Complaints 1 3 2 6 3 4 4 12 5 2 6 9 This exercise contains only parts a, b, and c. Part 2 a) The type of control chart that is best to monitor this process is c minus chart ______ . Part 3 b) Using z = 3, the control chart limits for this process are (assume that the historical complaints rate is unknown): UCLc = ________ complaints per week (round your response to two decimal places). The upper control limit is: ________ The lower control limit is: _________ The central limit is ___________arrow_forwardA can filling process at a beverage manufacturing factory is assumed to be in control with limits of 84 ±3 had sample averages for the x-bar chart of the following:87.1,87, 87.2, 89, 90, 88.5, 89.5, and 88. Which of the following statement ?below are correct Not enough information to determine .a O None is correct b O Process mean is in-control .c O Process mean is out-of-control .d O أخل اختياري 4) E ENG acerarrow_forwardRefer to Table 56.1-Factors for Computing Control Chart Limits.(3.sigma) for this problem. Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows: a) What is the value of x? mm (round your response to two decimal places). b) What is the value of R? R=mm (round your response to two decimal places). c) What are the UCL, and LCL; using 3-sigma? Day 1 2 3 4 5 Upper Control Limit (UCL;)mm (round your response to two decimal places) Lower Control Limit (LCL;)mm (round your response to two decimal places). d) What are the UCL and LCL using 3-sigma? Upper Control Limit (UCLR)-mm (round your response to two decimal places). Lower Control Limit (LCL)-mm (round your response to two decimal places) Mean x (mm) 154.9 151.2 155.6 155.5 154.6 Range R (mm) 4.4 4.8 4.3 5.0 4.7 Nextarrow_forward
- At Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its length is between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49 inches and a standard deviation of 0.014 inches. a) is the process capable of meeting specifications? b) Does the process meet specifications?arrow_forwardAuto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor that must be controlled. From sample sizes of 10 pistons produced each day, the mean and the range of this diameter have been as follows: a) What is the value of x? = x= 155.56 mm (round your response to two decimal places). b) What is the value of R? R 4.48 mm (round your response to two decimal places). c) What are the UCL; and LCL; using 3-sigma? Day 1 2 3 4 5 Upper Control Limit (UCL) = 156.94 mm (round your response to two decimal places). Lower Control Limit (LCL-) = 154.18 mm (round your response to two decimal places). d) What are the UCLR and LCLR using 3-sigma? Upper Control Limit (UCL) = 7.96 mm (round your response to two decimal places). Mean x (mm) 154.9 153.2 155.6 155.5 158.6 Range R (mm) 4.0 4.8 3.9 5.0 4.7 Lower Control Limit (LCL) = 1.00 mm (round your response to two decimal places). e) If the true diameter mean should be 155 mm and you want…arrow_forwardA machine is used to fill cans of motor oil additive. A single sample can is selected every hour and the net weight of the can is obtained. Since the filling process is automated, it has very stable variability, and long experience indicates that s = 0.02 oz. The process target (process mean when in control) is 8.02 oz. A tabular cusum is being used for this process with standardized values h=4.5 and k=0.5. If the values of Cumulative sums at the end of measurement 7 were C," + = 0.030 and C,¯ = 0.0 , and measurement 8 is equal to Xg = 8.071, what will be the Cumulative sum at the end of measurement 8, that is C3 + = ? 0.041 0.071 0.051 0.046 0.061arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.